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Abstract

The latest real-time graphics architectures include programmable
floating-point vertex and fragment processors, with support for
data-dependent control flow in the vertex processor. We present
a programming language and a supporting system that are designed
for programming these stream processors. The language follows
the philosophy of C, in that it is a hardware-oriented, general-
purpose language, rather than an application-specific shading
language. The language includes a variety of facilities designed
to support the key architectural features of programmable graphics
processors, and is designed to support multiple generations of
graphics architectures with different levels of functionality. The
system supports both of the major 3D graphics APIs: OpenGL and
Direct3D. This paper identifies many of the choices that we faced as
we designed the system, and explains why we made the decisions
that we did.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
D.3.4 [Programming Languages]: Processors – Compilers and code
generation I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

1 Introduction

Graphics architectures are now highly programmable, and support
application-specified assembly language programs for both vertex
processing and fragment processing. But it is already clear that
the most effective tool for programming these architectures is a
high level language. Such languages provide the usual benefits
of program portability and improved programmer productivity,
and they also make it easier develop programs incrementally and
interactively, a benefit that is particularly valuable for shader
programs.

In this paper we describe a system for programming graphics
hardware that supports programs written in a new C-like language
named Cg. The Cg language is based on both the syntax and
the philosophy of C [Kernighan and Ritchie 1988]. In particular,
Cg is intended to be general-purpose (as much as is possible
on graphics hardware), rather than application specific, and is
a hardware-oriented language. As in C, most data types and
operators have an obvious mapping to hardware operations, so
that it is easy to write high-performance code. Cg includes a
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variety of new features designed to efficiently support the unique
architectural characteristics of programmable graphics processors.
Cg also adopts a few features from C++ [Stroustrup 2000] and
Java [Joy et al. 2000], but unlike these languages Cg is intended
to be a language for “programming in the small,” rather than
“programming in the large.”

Cg is most commonly used for implementing shading algorithms
(Figure 1), but Cg is not an application-specific shading language
in the sense that the RenderMan shading language [Hanrahan and
Lawson 1990] or the Stanford real-time shading language (RTSL)
[Proudfoot et al. 2001] are. For example, Cg omits high-level
shading-specific facilities such as built-in support for separate
surface and light shaders. It also omits specialized data types
for colors and points, but supports general-purpose user-defined
compound data types such as structs and arrays.

As is the case for almost all system designs, most features
of the Cg language and system are not novel when considered
individually. However, when considered as a whole, we believe
that the system and its design goals are substantially different from
any previously-implemented system for programming graphics
hardware.

The design, implementation, and public release of the Cg system
has occurred concurrently with the design and development of
similar systems by 3Dlabs [2002], the OpenGL ARB [Kessenich
et al. 2003], and Microsoft [2002b]. There has been significant
cross-pollination of ideas between the different efforts, via both
public and private channels, and all four systems have improved
as a result of this exchange. We will discuss some of the remaining
similarities and differences between these systems throughout this
paper.

This paper discusses the Cg programmer interfaces (i.e. Cg
language and APIs) and the high-level Cg system architecture.
We focus on describing the key design choices that we faced and
on explaining why we made the decisions we did, rather than
providing a language tutorial or describing the system’s detailed
implementation and internal architecture. More information about
the Cg language is available in the language specification [NVIDIA
Corp. 2003a] and tutorial [Fernando and Kilgard 2003].

Figure 1: Screen captures from a real-time Cg demo running on
an NVIDIA GeForceTMFX. The procedural paint shader makes the
car’s surface rustier as time progresses.

2 Background

Off-line rendering systems have supported user-programmable
components for many years. Early efforts included Perlin’s
pixel-stream editor [1985] and Cook’s shade-tree system [1984].



Today, most off-line rendering systems use the RenderMan
shading language, which was specifically designed for procedural
computation of surface and light properties.

In real-time rendering systems, support for user programmability
has evolved with the underlying graphics hardware. The UNC
PixelFlow architecture [Molnar et al. 1992] and its accompanying
PFMan procedural shading language [Olano and Lastra 1998] and
rendering API [Leech 1998] demonstrated the utility of real-time
procedural shading capabilities. Commercial systems are only now
reaching similar levels of flexibility and performance.

For many years, mainstream commercial graphics hardware
was configurable, but not user programmable (e.g. RealityEngine
[Akeley 1993]). SGI’s OpenGL shader system [Peercy et al.
2000] and Quake III’s shading language [Jaquays and Hook 1999]
targeted the fragment-processing portion of this hardware using
multipass rendering techniques, and demonstrated that mainstream
developers would use higher-level tools to program graphics
hardware.

Although multipass rendering techniques can map almost any
computation onto hardware with just a few basic capabilities
[Peercy et al. 2000], to perform well multipass techniques require
hardware architectures with a high ratio of memory bandwidth to
arithmetic units. But VLSI technology trends are driving systems
in the opposite direction: arithmetic capability is growing faster
than off-chip bandwidth [Dally and Poulton 1998].

In response to this trend, graphics architects began to incorporate
programmable processors into both the vertex-processing and
fragment-processing stages of single-chip graphics architectures
[Lindholm et al. 2001]. The Stanford RTSL system [Proudfoot
et al. 2001] was designed for this type of programmable graphics
hardware. Earlier real-time shading systems had focused on
fragment computations, but RTSL supports vertex computations as
well. Using RTSL, a user writes a single program, but may specify
whether particular computations should be mapped to the vertex
processor or the fragment processor by using special data-type
modifiers.

The most recent generation of PC graphics hardware (DirectX 9
or DX9 hardware, announced in 2002), continues the trend of
adding additional programmable functionality to both the fragment
and the vertex processors (Figure 2). The fragment processor adds
flexible support for floating-point arithmetic and computed texture
coordinates [Mitchell 2002; NVIDIA Corp. 2003b]. Of greater
significance for languages and compilers, the vertex processor
in some of these architectures departs from the previous SIMD
programming model, by adding conditional branching functionality
[NVIDIA Corp. 2003c]. This branching capability cannot be easily
supported by RTSL for reasons that we will discuss later.
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Figure 2: Current graphics architectures (DX9-class architectures)
include programmable floating-point vertex and fragment proces-
sors.

Despite these advances in PC graphics architectures, they
cannot yet support a complete implementation of C, as the SONY
PlayStation 2 architecture does for its vertex processor that resides
on a separate chip [Codeplay Corporation 2003].

Thus, by early 2001, when our group at NVIDIA began to
experiment with programming languages for graphics hardware,
it was clear that developers would need a high-level language
to use future hardware effectively, but that each of the existing
languages had significant shortcomings. Microsoft was interested
in addressing this same problem, so the two companies collaborated

on the design of a new language. NVIDIA refers to its
implementation of the language, and the system that supports it,
as Cg. In this paper, we consider the design of the Cg language and
the design of the system that surrounds and supports it.

3 Design Goals

The language and system design was guided by a handful of high-
level goals:

• Ease of programming.
Programming in assembly language is slow and painful, and
discourages the rapid experimentation with ideas and the
easy reuse of code that the off-line rendering community has
already shown to be crucial for shader design.

• Portability.
We wanted programs to be portable across hardware from
different companies, across hardware generations (for DX8-
class hardware or better), across operating systems (Windows,
Linux, and MacOS X), and across major 3D APIs (OpenGL
[Segal and Akeley 2002] and DirectX [Microsoft Corp.
2002a]). Our goal of portability across APIs was largely
motivated by the fact that GPU programs, and especially
“shader” programs, are often best thought of as art assets –
they are associated more closely with the 3D scene model
than they are with the actual application code. As a result, a
particular GPU program is often used by multiple applications
(e.g. content-creation tools), and on different platforms (e.g.
PCs and entertainment consoles).

• Complete support for hardware functionality.
We believed that developers would be reluctant to use a high-
level language if it blocked access to functionality that was
available in assembly language.

• Performance.
End users and developers pay close attention to the perfor-
mance of graphics systems. Our goal was to design a language
and system architecture that could provide performance equal
to, or better than, typical hand-written GPU assembly code.
We focused primarily on interactive applications.

• Minimal interference with application data.
When designing any system layered between applications
and the graphics hardware, it is tempting to have the system
manage the scene data because doing so facilitates resource
virtualization and certain global optimizations. Toolkits such
as SGI’s Performer [Rohlf and Helman 1994] and Electronic
Arts’s EAGL [Lalonde and Schenk 2002] are examples of
software layers that successfully manage scene data, but their
success depends on both their domain-specificity and on the
willingness of application developers to organize their code
in conforming ways. We wanted Cg to be usable in existing
applications, without the need for substantial reorganization.
And we wanted Cg to be applicable to a wide variety of
interactive and non-interactive application categories. Past
experience suggests that these goals are best achieved by
avoiding management of scene data.

• Ease of adoption.
In general, systems that use a familiar programming model
and can be adopted incrementally are accepted more rapidly
than systems that must be adopted on an all-or-nothing basis.
For example, we wanted the Cg system to support integration
of a vertex program written in Cg with a fragment program
written in assembly language, and vice-versa.

• Extensibility for future hardware.
Future programmable graphics architectures will be more
flexible than today’s architectures, and they will require



additional language functionality. We wanted to design a
language that could be extended naturally without breaking
backward compatibility.

• Support for non-shading uses of the GPU.
Graphics processors are rapidly becoming sufficiently flexible
that they can be used for tasks other than programmable
transformation and shading (e.g. [Boltz et al. 2003]). We
wanted to design a language that could support these new uses
of GPUs.

Some of these goals are in partial conflict with each other.
In cases of conflict, the goals of high performance and support
for hardware functionality took precedence, as long as doing so
did not fundamentally compromise the ease-of-use advantage of
programming in a high-level language.

Often system designers must preserve substantial compatibility
with old system interfaces (e.g. OpenGL is similar to IRIS GL). In
our case, that was a non-goal because most pre-existing high level
shader code (e.g. RenderMan shaders) must be modified anyway to
achieve real-time performance on today’s graphics architectures.

4 Key Design Decisions

4.1 A “general-purpose language”, not a
domain-specific “shading language”

Computer scientists have long debated the merits of domain-
specific languages vs. general-purpose languages. We faced the
same choice – should we design a language specifically tailored
for shading computations, or a more general-purpose language
intended to expose the fundamental capabilities of programmable
graphics architectures?

Domain-specific languages have the potential to improve
programmer productivity, to support domain-specific forms of
modularity (such as surface and light shaders), and to use domain-
specific information to support optimizations (e.g. disabling lights
that are not visible from a particular surface). Most of these
advantages are obtained by raising the language’s abstraction level
with domain-specific data types, operators, and control constructs.

These advantages are counterbalanced by a number of disadvan-
tages that typically accompany a language based on higher-level
abstractions. First, in contrast to a low-level language such as
C, the run-time cost of language operators may not be obvious.
For example, the RenderMan system may compute coordinate
transformations that are not explicitly requested. Second, the
language’s abstraction may not match the abstraction desired by
the user. For example, neither RenderMan nor RTSL can easily
support OpenGL’s standard lighting model because the OpenGL
model uses separate light colors for the diffuse and specular light
terms. Finally, if the domain-specific language abstraction does not
match the underlying hardware architecture well, the language’s
compiler and runtime system may have to take complete control of
the underlying hardware to translate between the two abstractions.

These issues – when considered with our design goals of high
performance, minimal management of application data, and support
for non-shading uses of GPU’s – led us to develop a hardware-
focused general-purpose language rather than a domain-specific
shading language.

We were particularly inspired by the success of the C language in
achieving goals for performance, portability, and generality of CPU
programs that were very similar to our goals for a GPU language.
One of C’s designers, Dennis Ritchie, makes this point well [Ritchie
1993]:

“C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it evidently

satisfied a need for a system implementation language
efficient enough to displace assembly language, yet
sufficiently abstract and fluent to describe algorithms
and interactions in a wide variety of environments.”

These reasons, along with C’s familiarity for developers, led us
to use C’s syntax, semantics, and philosophy as the initial basis
for Cg’s language specification. It was clear, however, that we
would need to extend and modify C to support GPU architectures
effectively.

Using C as the basis for a GPU language has another advantage:
It provides a pre-defined evolutionary path for supporting future
graphics architectures, which may include CPU-like features such
as general-purpose indirect addressing. Cg reserves all C and C++
keywords so that features from these languages can be incorporated
into future implementations of Cg as needed, without breaking
backward compatibility.

As will become evident, Cg also selectively uses ideas from
C++, Java, RenderMan, and RTSL. It has also drawn ideas from
and contributed ideas to the contemporaneously-developed C-like
shading languages from 3Dlabs (hereafter 3DLSL), the OpenGL
ARB (GLSL), and Microsoft (HLSL).

4.2 A program for each pipeline stage

The user-programmable processors in today’s graphics architec-
tures use a stream-processing model [Herwitz and Pomerene 1960;
Stephens 1997; Kapasi et al. 2002], as shown earlier in Figure
2. In this model, a processor reads one element of data from
an input stream, executes a program (stream kernel) that operates
on this data, and writes one element of data to an output stream.
For example, the vertex processor reads one untransformed vertex,
executes the vertex program to transform the vertex, and writes the
resulting transformed vertex to an output buffer. The output stream
from the vertex processor passes through a non-programmable
part of the pipeline (including primitive assembly, rasterization,
and interpolation), before emerging as a stream of interpolated
fragments that form the input stream to the fragment processor.

Choosing a programming model to layer on top of this stream-
processing architecture was a major design question. We initially
considered two major alternatives. The first, illustrated by RTSL
and to a lesser extent by RenderMan, is to require that the user write
a single program, with some auxiliary mechanism for specifying
whether particular computations should be performed on the vertex
processor or the fragment processor. The second, illustrated by the
assembly-level interfaces in OpenGL and Direct3D, is to use two
separate programs. In both cases, the programs consume an element
of data from one stream, and write an element of data to another
stream.

The unified vertex/fragment program model has a number of
advantages. It encapsulates all of the computations for a shader
in one piece of code, a feature that is particularly comfortable
for programmers who are already familiar with RenderMan. It
also allows the compiler to assist in deciding which processor
will perform a particular computation. For example, in RTSL,
if the programmer does not explicitly specify where a particular
computation will be performed, the compiler infers the location
using a set of well-defined rules. Finally, the single-program model
facilitates source code modularity by allowing a single function to
include related vertex and fragment computations.

However, the single-program model is not a natural match for
the underlying dual-processor architecture. If the programmable
processors omit support for branch instructions, the model can be
effective, as RTSL demonstrated. But if the processors support
branch instructions, the single-program model becomes very
awkward. For example, this programming model allows arbitrary
mixing of vertex and fragment operations within data-dependent



loops, but the architecture can support only fragment operations
within fragment loops, and only vertex operations within vertex
loops. It would be possible to define auxiliary language rules
that forbid intermixed loop operations, but we concluded that the
result would be an unreasonably confusing programming model
that would eliminate many of the original advantages of the
single-program model.

As a result, we decided to use a multi-program model for Cg.
Besides eliminating the difficulties with data-dependent control
flow, this model’s closer correspondence to the underlying GPU
architecture makes it easier to for users to estimate the performance
of code, and allows the use of a less-intrusive compiler and
runtime system. The multi-program model also allows applications
to choose the active vertex program independently from the
active fragment program. This capability had been requested by
application developers.

A language for expressing stream kernels

After we made the decision to use a multi-program model for
Cg, we realized that we had the opportunity to both simplify and
generalize the language by eliminating most of the distinctions
between vertex programs and fragment programs. We developed
a single language specification for writing a stream kernel (i.e.
vertex program or fragment program), and then allowed particular
processors to omit support for some capabilities of the language.
For example, although the core language allows the use of texture
lookups in any program, the compiler will issue an error if the
program is compiled for any of today’s vertex processors since
today’s vertex processors don’t support texture lookups. We will
explain this mechanism in more detail later, in our discussion
of Cg’s general mechanism for supporting different graphics
architectures.

The current Cg system can be thought of as a specialized
stream processing system [Stephens 1997]. Unlike general stream
processing languages such as StreamIt [Thies et al. 2002] or
Brook [Buck and Hanrahan 2003], the Cg system does not
provide a general mechanism for specifying how to connect stream
processing kernels together. Instead, the Cg system relies on
the established graphics pipeline dataflow of GPUs. Vertex data
sent by the application is processed by the vertex kernel (i.e. the
vertex program). The results of the vertex program are passed
to primitive assembly, rasterization, and interpolation. Then the
resulting interpolated fragment parameters are processed by the
fragment kernel (i.e. the fragment program) to generate data used
by the framebuffer-test unit to update the fragment’s corresponding
pixel. Cg’s focus on kernel programming is similar to that of
Imagine KernelC [Mattson 2001]. However, if the Cg language
is considered separately from the rest of the Cg system, it is only
mildly specialized for stream-kernel programming and could be
extended to support other parallel programming models.

A data-flow interface for program inputs and outputs

For a system with a programming model based on separate vertex
and fragment programs, a natural question arises: Should the
system allow any vertex program to be used with any fragment
program? Since the vertex program communicates with the
fragment program (via the rasterizer/interpolator), how should the
vertex program outputs and fragment program inputs be defined to
ensure compatibility? In effect, this communication constitutes a
user-defined interface between the vertex program and the fragment
program, but the interface is a data-flow interface rather than a
procedural interface of the sort that C programmers are accustomed
to. A similar data-flow interface exists between the application
and inputs to the vertex program (i.e. vertex arrays map to vertex
program input registers).

When programming GPUs at the assembly level, the interface
between fragment programs and vertex programs is established at
the register level. For example, the user can establish a convention
that the vertex program should write the normal vector to the
TEXCOORD3 output register, so that it is available to the fragment
program (after being interpolated) in its TEXCOORD3 input register.
These registers may be physical registers or virtual registers (i.e.
API resources that are bound to physical registers by the driver), but
in either case the binding names must be chosen from a predefined
namespace with predefined data types.

Cg and HLSL support this same mechanism, which can be
considered to be a modified bind-by-name scheme in which a
predefined auxiliary namespace is used instead of the user-defined
identifier name. This approach provides maximum control over the
generated code, which is crucial when Cg is used for the program
on one side of the interface but not for the program on the other
side. For example, this mechanism can be used to write a fragment
program in Cg that will be compatible with a vertex program
written in assembly language.

Cg (but not HLSL) also supports a bind-by-position scheme.
Bind-by-position requires that data be organized in an ordered list
(e.g. as a function-parameter list, or a list of structure members),
with the outputs in a particular position mapping to inputs in that
same position. This scheme avoids the need to refer to a predefined
auxiliary namespace.

GLSL uses a third scheme, pure bind-by-name, that is not
supported by either Cg or HLSL. In the pure bind-by-name
scheme, the binding of identifiers to actual hardware registers
must be deferred until after the vertex program and fragment
program have been paired, which may not happen until link
time or run time. In contrast, the bind-by-position approach
allows the binding to be performed at compile time, without any
knowledge of the program at the other side of the interface. For
this reason, performance-oriented languages such as C that are
designed for separate compile and link steps have generally chosen
bind-by-position instead of bind-by-name.

4.3 Permit subsetting of language

Striking a balance between the often-conflicting goals of portability
and comprehensive support for hardware functionality was a major
design challenge. The functionality of GPU processors is growing
rapidly, so there are major differences in functionality between the
different graphics architectures that Cg supports. For example,
DX9-class architectures support floating-point fragment arithmetic
while most DX8-class architectures do not. Some DX9-class
hardware supports branching in the vertex processor while other
DX9-class hardware does not. Similarly, on all recent architectures
the vertex processor and fragment processor support different
functionality.

We considered a variety of possible approaches to hiding or
exposing these differences. When minor architectural differences
could be efficiently hidden by the compiler, we did so. However,
since performance is important in graphics, major architectural
differences cannot reasonably be hidden by a compiler. For
example, floating-point arithmetic could be emulated on a
fixed-point architecture but the resulting performance would be so
poor that the emulation would be worthless for most applications.

A different approach is to choose a particular set of capabilities,
and mandate that any implementation of the language support all
of those capabilities and no others. If the only system-design goal
had been to maximize portability, this approach would have been
the right one. GLSL currently follows this approach, although it
specifies a different set of capabilities for the vertex and fragment
processor. However, given our other design goals, there was no
reasonable point at which we could set the feature bar. We wanted



both to support the existing installed base of DX8-class hardware,
and to provide access to the capabilities of the latest hardware. It
could be argued that the presence of significant feature disparities
is a one-time problem, but we disagree – feature disparities will
persist as long as the capabilities of graphics hardware continue to
improve, as we expect will happen.

Our remaining choice was to expose major architectural
differences as differences in language capabilities. To minimize the
impact on portability, we exposed the differences using a subsetting
mechanism. Each processor is defined by a profile that specifies
which subset of the full Cg specification is supported on that
processor. Thus, program compatibility is only compromised for
programs that use a feature that is not supported by all processors.
For example, a program that uses texture mapping cannot be
compiled with any current vertex profile. The explicit existence
of this mechanism is one of the major differences between Cg and
GLSL, and represents a significant difference in design philosophy.
However, hardware vendors are free to implement subsets and
supersets of GLSL using the OpenGL extension mechanism,
potentially reducing the significance of this difference in practice.

The NVIDIA Cg compiler currently supports 18 different
profiles, representing vertex and fragment processors for the
DirectX 8, DirectX 9, and OpenGL APIs, along with various
extensions and capability bits representing the functionality of
different hardware. Although one might be concerned that this
profile mechanism would make it difficult to write portable Cg
programs, it is surprisingly easy to write a single Cg program that
will run on all vertex profiles, or on all DX9-class fragment profiles.
With care, it is even possible to write a single Cg program that will
run on any fragment profile; the extra difficulty is caused by the
idiosyncratic nature of DX8-class fragment hardware.

4.4 Modular system architecture

Any system has a variety of modules connected by internal and
external interfaces. Taken as a whole, these constitute the system
architecture. Cg’s system architecture (Figure 3) includes much
more than the language itself. More specifically, it includes an
API that applications can use to compile and manage Cg programs
(the Cg runtime), and several modules layered on top of existing
graphics APIs.

Cg’s architecture is more modular than that of the SGI, GLSL
and RTSL systems but similar to that of HLSL. The architecture
provides a high degree of flexibility for developers in deciding
which parts of the system to use. For example, it is easy to use
the complete Cg system to program the fragment processor while
relying on the OpenGL API’s conventional fixed-function routines
to control the vertex processor. The modular nature of the system
does makes it difficult to implement some optimizations that would
cross module boundaries; this tradeoff is a classic one in systems
design.

Metaprogramming systems (e.g. [McCool et al. 2002]), which
use operator overloading to embed one language within another,
have a very different system architecture. In metaprogramming
systems, there is no clear boundary between the host CPU language,
the embedded GPU language, and the mechanism for passing data
between the two. This tight integration has some advantages, but
we chose a more modular, conventional architecture for Cg. The
two classes of system architectures are sufficiently different that we
do not attempt to compare them in detail in this paper.

4.4.1 No mandatory virtualization

The most contentious system design question we faced was
whether or not to automatically virtualize hardware resources using
software-based multi-pass techniques. Current hardware limits the
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Figure 3: Cg system architecture

number of instructions, live temporary registers, bound textures,
program inputs, and program outputs used by a program. Thus,
without software-assisted virtualization a sufficiently complex
program will exceed these limits and fail to compile. The limits
on instruction count and temporary register count are potentially
the most serious because the consumption of these resources is
not clearly defined in a high-level language and may depend on
compiler optimizations.

The SGI and RTSL systems demonstrated that it is possible to
use multi-pass techniques to virtualize some resources for pre-DX8
hardware [Peercy et al. 2000; Proudfoot et al. 2001] and for later
hardware [Chan et al. 2002]. However, we consider it to be im-
possible to efficiently, correctly, and automatically virtualize most
DX8 architectures because the architectures use high-precision data
types internally, but do not provide a high-precision framebuffer to
store these data types between passes.

Despite the apparent advantages of automatic virtualization, we
do not require it in the Cg language specification, and we do
not support it in the current release of the Cg system. Several
factors led to this decision. First, virtualization is most valuable on
hardware with the fewest resources – DX8-class hardware in this
case – but we had already concluded that effective virtualization
of this hardware was impossible. Second, the resource limits
on newer DX9-class hardware are set high enough that most
programs that exceed the resource limits would run too slowly
to be useful in a real-time application. Finally, virtualization
on current hardware requires global management of application
data and hardware resources that conflicted with our design goals.
More specifically, the output from the vertex processor must be
fed to the fragment processor, so multi-pass virtualization requires
the system to manage simultaneously the vertex program and the
fragment program, as well as all program parameters and various
non-programmable graphics state. For example, when RTSL
converts a long fragment program into multiple passes, it must also
generate different vertex processor code for each pass.

Although Cg’s language specification does not require virtualiza-
tion, we took care to define the language so that it does not preclude
virtualization. As long as the user avoids binding inputs and outputs
to specific hardware registers, the language itself is virtualizable.
For example, Cg adopts RTSL’s approach of representing textures
using identifiers (declared with special sampler types), rather than
texture unit numbers, which are implicitly tied to a single rendering
pass. Virtualization is likely to be useful for applications that can
tolerate slow frame rates (e.g. 1 frame/sec), and for non-rendering
uses of the GPU. Future hardware is likely to include better support
for resource virtualization, at which point it would be easier for
either the hardware driver or the Cg system to support it.

Of the systems contemporary with Cg, HLSL neither requires
nor implements virtualization, and GLSL requires it only for



resources whose usage is not directly visible in the language (i.e.
instructions and temporary registers).

4.4.2 Layered above an assembly language interface

High level languages are generally compiled to a machine/assembly
language that runs directly on the hardware. The system designers
must decide whether or not to expose this machine/assembly
language as an additional interface for system users. If this interface
is not exposed, the high level language serves as the only interface
to the programmable hardware.

With a separate assembly language interface, the system is
more modular. The compiler and associated run-time system may
be distributed separately from the driver, or even shipped with
the application itself. Users can choose between running the
compiler as a command-line tool, or invoking it through an API
at application run time. By providing access to the assembly code,
the system allows users to tune their code by studying the compiler
output, by manually editing the compiler output, or even by writing
programs entirely in assembly language. All of these capabilities
can be useful for maximizing performance, although they are less
important if the compiler optimizes well.

In contrast, if the high-level language is the only interface to
the hardware then the compiler must be integrated into the driver.
This approach allows graphics architects to change the hardware
instruction set in the future. Also, by forcing the user to compile via
the driver, the system can guarantee that old applications will use
compiler updates included in new drivers. However, the application
developer loses the ability to guarantee that a particular pre-tested
version of the compiler will be used. Since optimizing compilers
are complex and frequently exhibit bugs at higher optimization
levels, we considered this issue to be significant. Similarly, if
the developer cannot control the compiler version, there is a risk
that a program’s use of non-virtualized resources could change and
trigger a compilation failure where there was none before.

These and other factors led us to layer the Cg system above the
low-level graphics API, with an assembly language serving as the
interface between the two layers. RTSL and HLSL take this same
approach, while GLSL takes the opposite approach of integrating
the high-level language into the graphics API and driver.

4.4.3 Explicit program parameters

All input parameters to a Cg program must be explicitly
declared using non-static global variables or by including the
parameters on the entry function’s parameter list. Similarly, the
application is responsible for explicitly specifying the values for
the parameters. Unlike GLSL, the core Cg specification does not
include pre-defined global variables such as gl ModelViewMatrix that
are automatically filled from classical graphics API state. Such
pre-defined variables are contrary to the philosophy of C and are
not portable across 3D APIs with different state. We believe that
even in shading programs all state used by vertex and fragment
programs ought to be programmer-defined rather than mediated by
fixed API-based definitions. However, pre-defined variables can be
useful for retrofitting programmability into old applications, and for
that reason some Cg profiles support them.

At the assembly language level, program inputs are passed
in registers or, in some cases, named parameters. In either
case, the parameter passing is untyped. For example, in the
ARB vertex program assembly language each program parameter
consists of four floating-point values. Because the Cg system is
layered on top of the assembly-language level, developers may pass
parameters to Cg programs in this manner if they wish.

However, Cg also provides a set of runtime API routines that
allow parameters to be passed using their true names and types.
GLSL uses a similar mechanism. In effect, this mechanism

allows applications to pass parameters using Cg semantics rather
than assembly-language semantics. Usually, this approach is
easier and less error-prone than relying on the assembly-level
parameter-passing mechanisms. These runtime routines make use
of a header provided by the Cg compiler on its assembly language
output that specifies the mapping between Cg parameters and
registers (Figure 4). There are three versions of these runtime
libraries – one for OpenGL, one for DirectX 8, and one for
DirectX 9. Separate libraries were necessary to accommodate
underlying API differences and to match the style of the respective
APIs.

#profile arbvp1
#program simpleTransform
#semantic simpleTransform.brightness
#semantic simpleTransform.modelViewProjection
#var float4 objectPosition : $vin.POSITION : POSITION : 0 : 1
#var float4 color : $vin.COLOR : COLOR : 1 : 1
. . .
#var float brightness : : c[0] : 8 : 1
#var float4x4 modelViewProjection : : c[1], 4 : 9 : 1

Figure 4: The Cg compiler prepends a header to its assembly code
output to describe the mapping between program parameters and
registers.

5 Cg Language Summary

Although this paper is not intended to be a tutorial on the Cg
language, we describe the language briefly. This description
illustrates some of our design decisions and facilitates the
discussions later in this paper.

5.1 Example program

Figure 5 shows a Cg program for a vertex processor. The program
transforms an object-space position for a vertex by a four-by-four
matrix containing the concatenation of the modeling, viewing, and
projection transforms. The resulting vector is output as the clip-
space position of the vertex. The per-vertex color is scaled by a
floating-point parameter prior to output. Also, a texture coordinate
set is passed through without modification.

void simpleTransform(float4 objectPosition : POSITION,
float4 color : COLOR,
float4 decalCoord : TEXCOORD0,

out float4 clipPosition : POSITION,
out float4 oColor : COLOR,
out float4 oDecalCoord : TEXCOORD0,

uniform float brightness,
uniform float4x4 modelViewProjection)

{
clipPosition = mul(modelViewProjection, objectPosition);
oColor = brightness * color;
oDecalCoord = decalCoord;

}
Figure 5: Example Cg Program for Vertex Processor

Cg supports scalar data types such as float but also has first-class
support for vector and matrix data types. The identifier float4
represents a vector of four floats, and float4x4 represents a matrix.
The mul function is a standard library routine that performs matrix
by vector multiplication. Cg provides function overloading like
C++; mul is overloaded and may be used to multiply various
combinations of vectors and matrices.



Cg provides the same operators as C. Unlike C, however, Cg
operators accept and return vectors as well as scalars. For example,
the scalar, brightness, scales the vector, color, as you would expect.

In Cg, declaring a vertex program parameter with the uniform
modifier indicates that its value will not vary over a batch
of vertices. The application must provide the value of such
parameters. For example, the application must supply the
modelViewProjection matrix and the brightness scalar, typically by
using the Cg runtime library’s API.

The POSITION, COLOR, and TEXCOORD0 identifiers following the
objectPosition, color, and decalCoord parameters specify how these
parameters are bound to API resources. In OpenGL, glVertex
commands feed POSITION; glColor commands feed COLOR; and
glMultiTexCoord commands feed TEXCOORDn.

The out modifier indicates that clipPosition, oColor, and oDecalCoord
parameters are output by the program. The identifier following the
colon after each of these parameters specifies how the output is fed
to the primitive assembly and rasterization stages of the graphics
pipeline.

5.2 Other Cg functionality

Cg provides structures and arrays, including multi-dimensional
arrays; all of C’s arithmetic operators (+, *, /, etc.); a boolean
type and boolean and relational operators (||, &&, !, etc.);
increment/decrement (++/- -) operators; the conditional expression
operator (?:); assignment expressions (+=, etc.); and even the C
comma operator.

Cg supports programmer-defined functions (in addition to pre-
defined standard library functions), but recursive functions are not
allowed. Cg provides only a subset of C’s control flow constructs:
(do, while, for, if, break, and continue). Other constructs, such as goto
and switch, are not supported in the current Cg implementation, but
the necessary keywords are reserved.

Cg provides built-in constructors for vector data types (similar to
C++ but not user-definable): e.g. float4 a = float4(4.0, -2.0, 5.0, 3.0);

Swizzling is a way of rearranging components of vector values
and constructing shorter or longer vectors. For example:

float2 b = a.yx; // b = (-2.0, 4.0)
Cg does not currently support pointers or bitwise operations. Cg

lacks most C++ features for “programming in the large” such as
full classes, templates, operator overloading, exception handling,
and namespaces. Cg supports #include, #define, #ifdef, etc. matching
the C preprocessor.

6 Design Issues

6.1 Support for hardware

By design, the C language is close to the level of the hardware
– it exposes the important capabilities of CPU hardware in the
language. For example, it exposes hardware data types (with
extensions such as long long if necessary) and the existence of
pointers. As a result, the C language provides performance
transparency – programmers have straightforward control over
machine-level operations, and thus the performance of their code.

When designing Cg, we followed this philosophy. The
discussion below is organized around the characteristics of GPU
hardware that led to differences between Cg and C.

6.1.1 Stream processor

The stream processing model used by the programmable processors
in graphics architectures is significantly different from the purely
sequential programming model used on CPUs. Much of the
new functionality in Cg (as compared to C) supports this stream

programming model. In particular, a GPU program is executed
many times – once for each vertex or fragment. To efficiently
accommodate this repeated execution, the hardware provides two
kinds of inputs to the program. The first kind of input changes
with each invocation of the program and is carried in the incoming
stream of vertices or fragments. An example is the vertex
position. The second kind of input may remain unchanged for many
invocations of the program; its value persists until a new value is
sent from the CPU as an update to the processor state. An example
is the modelview matrix. At the hardware level, these two types of
inputs typically reside in different register sets.

A GPU language compiler must know the category to which
an input belongs before it can generate assembly code. Given the
hardware-oriented philosophy of Cg, we decided that the distinction
should be made in the Cg source code. We adapted RenderMan’s
terminology for the two kinds of inputs: a varying input is carried
with the incoming stream of data, while a uniform input is updated
by an explicit state change. Consistent with the general-purpose
stream-processor orientation of Cg, this same terminology is used
for any processor within the GPU (i.e. vertex or fragment), unlike
the scheme used in GLSL, which uses different terminology
(and keywords) for varying-per-vertex and varying-per-fragment
variables.

Cg uses the uniform type qualifier differently than RenderMan. In
RenderMan, it may be used in any variable declaration and specifies
a general property of the variable, whereas in Cg it may only be
applied to program inputs and it specifies initialization behavior for
the variable. In the RenderMan interpretation, all Cg temporary
variables would be considered to be varying, and even a uniform
input variable becomes varying once it has been rewritten within
the program. This difference reflects the difference in the processor
models assumed by RenderMan and Cg: RenderMan is designed
for a SIMD processor, where many invocations of the program are
executing in lockstep and temporary results can be shared, while Cg
is designed for a stream processor in which each invocation of the
program may execute asynchronously from others, and no sharing
of temporary results is possible.

Computations that depend only on uniform parameters do not
need to be redone for every vertex or fragment, and could be
performed just once on the CPU with the result passed as a new
uniform parameter. RTSL can perform this optimization, which
may add or remove uniform parameters at the assembly language
level. The current Cg compiler does not perform this optimization;
if it did, applications would be required to pass uniform parameters
through the Cg runtime system rather than passing them directly
through the 3D API because the original inputs might no longer
exist at the 3D API level. This optimization is an example of a
global optimization that crosses system modules. We expect that
the Cg system will support optimizations of this type in the future,
but only when the application promises that it will pass all affected
parameters using the Cg runtime API.

6.1.2 Data types

The data types supported by current graphics processors are
different from those supported by standard CPUs, thus motivating
corresponding adjustments in the Cg language.

Some graphics architectures support just one numeric data type,
while others support multiple types. For example, the NVIDIA
GeForce FX supports three different numeric data types in its
fragment processor – 32-bit floating-point, 16-bit floating-point,
and 12-bit fixed-point. In general, operations that use the
lower-precision types are faster, so we wanted to provide some
mechanism for using these data types. Several alternatives were
possible. The first was to limit the language to a single float data
type, and hope that the compiler could perform interval and/or



precision analysis to map some computations to the lower-precision
types. This strategy is at odds with the philosophy of C, and has not
proven to be successful in the past. The second alternative (used in
GLSL) was to specify precision using hints, rather than first-class
data types. This approach makes it impossible to overload functions
based on the data types, a capability that we considered important
for supporting high-performance library functions. The third
alternative, used by Cg, is to include multiple numeric data types
in the language. Cg includes float, half, and fixed data types.

Just as C provides some flexibility in the precision used for its
different data types, the core Cg specification provides profiles with
flexibility to specify the format used for each of the data types,
within certain ranges. For example, in a profile that targets an
architecture with just one floating-point type, half precision may
be the same as float precision. For a few types (e.g. fixed and
sampler), profiles are permitted to omit support when appropriate.
In particular, the sampler types are used to represent textures,
and thus are of no use in profiles that do not support texture
lookups. However, to allow source code and data structures
targeted at different profiles to be mixed in a single source file,
the Cg specification requires that all profiles support definitions
and declarations of all Cg data types, and to support corresponding
assignment statements. The first two requirements are necessary
because of a quirk of C syntax: correct parsing of C requires that
the parser know whether an identifier was previously defined as a
type or as a variable. The third requirement makes it easier to share
data structures between different profiles.

In 3D rendering algorithms, three- and four-component vector
and four-by-four matrix operations are common. As a result,
most past and present graphics architectures directly support
four-component vector arithmetic (see e.g. [Levinthal et al. 1987;
Lindholm et al. 2001]). C’s philosophy of exposing hardware data
types suggests that these vector data types should be exposed, and
there is precedent for doing so in both shading languages [Levinthal
et al. 1987; Hanrahan and Lawson 1990] and in extensions to C
[Motorola Corp. 1999]. Despite these precedents, we initially tried
to avoid exposing these types by representing them indirectly with
C’s arrays-of-float syntax. This strategy failed because it did not
provide a natural mechanism for programmers or the compiler to
distinguish between the architecture’s vectors (now float4 x), and an
indirectly addressable array of scalars (now float x[4]). These two
types must be stored differently and support different operations
because current graphics architectures are restricted to 128-bit
granularity for indirect addressing. Thus, Cg and GLSL include
vector data types and operators, up to length four.

It would be possible to take the opposite approach to supporting
short vector hardware, by omitting short vector data types from the
language, and relying on the compiler to automatically combine
scalar operations to form vectorized assembly code [Larsen and
Amarasinghe 2000; Codeplay Corporation 2003]. This approach
requires sophisticated compiler technology to achieve acceptable
vectorization and obscures from the programmer the difference
between code that will run fast and code that will not. At best, this
fully automatic approach to vectorization can only hope to match
the performance of languages such as Cg that allow both manual
and automatic vectorization.

As a convenience for programmers, Cg also supports built-in
matrix types and operations, up to size four by four. This
decision was a concession to the primary use of Cg for rendering
computations.

Current graphics processors do not support integer data types,
but they do support boolean operations using condition codes and
predicated instructions. Thus, we initially decided to omit support
for the C int data type, but to add a bool data type for conditional
operations. This change was partly inspired by the bool type in
the latest C++ standard. We adjusted the data types expected by

C’s boolean operators and statements accordingly, so that most
common C idioms work with no change. Because some graphics
hardware supports highly-efficient vector operations on booleans,
we extended C’s boolean operations (&&, ||, ?:, etc.) to support bool
vectors. For example, the expression bool2(true,false) ? float2(1,1) :
float2(0,0) yields float2(1,0). Later, for better compatibility with C, we
restored the int type to the Cg specification, but retained the bool type
for operations that are naturally boolean and thus can be mapped to
hardware condition-code registers.

6.1.3 Indirect addressing

CPUs support indirect addressing (i.e. pointer dereferencing)
for reads or writes anywhere in memory. Current graphics
processors have very limited indirect addressing capability –
indirect addressing is available only when reading from the uniform
registers, or sampling textures. Unfortunately, programs written
in the C language use pointers frequently because C blurs the
distinction between pointer types and array types.

Cg introduces a clear distinction between these two types, both
syntactically and semantically. In particular, an array assignment in
Cg semantically performs a copy of the entire array. Of course, if
the compiler can determine that a full copy is unnecessary, it may
(and often does) omit the copy operation from the generated code.
Cg currently forbids the use of pointer types and operators, although
we expect that as graphics processors become more general, Cg will
re-introduce support for pointer types using the C pointer syntax.

To accommodate the limitations of current architectures, Cg
permits profiles to impose significant restrictions on the declaration
and use of array types, particularly on the use of computed
indices (i.e. indirect addressing). However, these restrictions take
the form of profile-dependent prohibitions, rather than syntactic
changes to the language. Thus, these prohibitions can be relaxed
or removed in the future, allowing future Cg profiles to support
general array operations without syntactic changes. In contrast,
3DLSL used special syntax and function calls (e.g. element) for
the array operations supported by current architectures, although
its descendent GLSL switched to C-like array notation.

The lack of hardware support for indirect addressing of a
read/write memory makes it impossible to implement a runtime
stack to hold temporary variables, so Cg currently forbids recursive
or co-recursive function calls. With this restriction, all temporary
storage can be allocated statically by the compiler.

Read/write parameters to a C function must be declared
using pointer types. We needed a different mechanism in Cg,
and considered two options. The first was to adopt the C++
call-by-reference syntax and semantics, as 3DLSL did. However,
call-by-reference semantics are usually implemented using indirect
addressing, to handle the case of parameter aliasing by the calling
function. On current architectures it is possible for a compiler
to support these semantics without the use of indirect addressing,
but this technique precludes separate compilation of different
functions (i.e. compile and link), and we were concerned that this
technique might not be adequate on future architectures. Instead,
we decided to support call-by-value-result semantics, which can be
implemented without the use of indirect addressing. We support
these semantics using a notation that is new to C/C++ (in and
out parameter modifiers, taken from Ada), thus leaving the C++
& notation available to support call-by-reference semantics in the
future. GLSL takes this same approach.

6.1.4 Interaction with the rest of the graphics pipeline

In current graphics architectures, some of the input and output
registers for the programmable processors are used to control the
non-programmable parts of the graphics pipeline, rather than to
pass general-purpose data. For example, the vertex processor must



store a position vector in a particular output register, so that it
may be used by the rasterizer. Likewise, if the fragment processor
modifies the depth value, it must write the new value to a particular
output register that is read by the framebuffer depth-test unit. We
could have chosen to pre-define global variables for these inputs
and outputs, but instead we treat them as much as possible like
other varying inputs and outputs. However, these inputs and outputs
are only available by using the language’s syntax for binding a
parameter to a register, which is optional in other cases. To ensure
program portability, the Cg specification mandates that certain
register identifiers (e.g. POSITION) be supported as an output by all
vertex profiles, and that certain other identifiers be supported by all
fragment profiles.

6.1.5 Shading-specific hardware functionality

The latest generation of graphics hardware includes a variety
of capabilities specialized for shading. For example, although
texture sampling instructions can be thought of as memory-read
instructions, their addressing modes and filtering are highly
specialized for shading. The GeForce FX fragment processor also
includes built-in discrete-differencing instructions [NVIDIA Corp.
2003b], which are useful for shader anti-aliasing.

We chose to expose these capabilities via Cg’s standard library
functions, rather than through the language itself. This approach
maintains the general-purpose nature of the language, while
supporting functionality that is important for shading. Thus, many
of Cg’s standard library functions are provided for more than
just convenience – they are mechanisms for accessing particular
hardware capabilities that would otherwise be unavailable.

In other cases, such as the lit function, library functions represent
common shading idioms that may be implemented directly in the
language, but can be more easily optimized by the compiler and
hardware if they are explicitly identified.

Although we do not discuss the details of the Cg standard library
in this paper, significant care went into its design. It supports
a variety of mathematical, geometric, and specialized functions.
When possible, the definitions were chosen to be the same as those
used by the corresponding C standard library and/or RenderMan
functions.

6.2 User-defined interfaces between modules

The RenderMan shading language and RTSL include support for
separate surface and light shaders, and the classical fixed-function
OpenGL pipeline does too, in a limited manner. However, these
shaders don’t actually execute independently; computing the color
of any surface point requires binding the light shaders to the
surface shader either explicitly or implicitly. In RenderMan and
fixed-function OpenGL, the binding is performed implicitly by
changing the current surface or light shaders. In RTSL, the
application must explicitly bind the shaders at compile time.

Considered more fundamentally, this surface/light modularity
consists of built-in surface and light object types that communicate
across a built-in interface between the two types of objects. In this
conceptual framework, a complete program is constructed from one
surface object that invokes zero or more light objects via the built-in
interface. There are several subtypes of light objects corresponding
to directional, positional, etc. lights. Light objects of different
subtypes contain different data (e.g. positional lights have a “light
position” but directional lights do not).

It would have run contrary to the C-like philosophy of Cg
to include specialized surface/light functionality in the language.
However, the ability to write separate surface and light shaders
has proven to be valuable, and we wanted to support it with more
general language constructs.

The general-purpose solution we chose is adopted from Java
and C#.1 The programmer may define an interface, which specifies
one or more function prototypes.2 For example, an interface may
define the prototypes for functions used to communicate between a
surface shader and a light shader. An interface may be treated as
a generic object type so that one routine (e.g. the surface shader)
may call a method from another object (e.g. an object representing
a light) using the function prototypes defined in the interface. The
programmer implements the interface by defining a struct (i.e. class)
that contains definitions for the interface’s functions (i.e. methods).
This language feature may be used to create programmer-defined
categories of interoperable modules; Figure 6 shows how it may be
used to implement separate surface and light shaders, although it is
useful for other purposes too. GLSL and HLSL do not currently
include any mechanism – either specialized or general-purpose –
that provides equivalent functionality.

All current Cg language profiles require that the binding of
interfaces to actual functions be resolvable at Cg compile time. This
binding may be specified either in the Cg language (as would be
done in Java), or via Cg runtime calls prior to compilation. Future
profiles could relax the compile-time binding requirement, if the
corresponding graphics instruction sets include an indirect jump
instruction.

6.3 Other language design decisions

6.3.1 Function overloading by types and by profile

Our decision to support a wide variety of data types led us to
conclude that we should support function overloading by data type.
In particular, most of Cg’s standard library functions have at least
twelve variants for different data types, so following C’s approach
of specifying parameter types in function name suffixes would have
been unwieldly.

Cg’s function overloading mechanism is similar to that of C++,
although Cg’s matching rules are less complex. For simple cases,
Cg’s matching rules behave intuitively. However, since matching
is performed in multiple dimensions (base type, vector length,
etc.) and implicit type promotion is allowed, it is still possible
to construct complex cases for which it is necessary to understand
the matching rules to determine which overloaded function will be
chosen.

Cg also permits functions to be overloaded by profile. Thus, it is
possible to write multiple versions of a function that are optimized
for different architectures, and the compiler will automatically
chose the version for the current profile. For example, one version
of a function might use standard arithmetic operations, while a
second version uses a table lookup from a texture (Figure 7).
This capability is useful for writing portable programs that include
optimizations for particular architectures. Some wildcarding of
profiles is supported – for example, it is possible to specify
just vertex and fragment versions of a function, rather than
specifying a version for every possible vertex and fragment profile.
The overloading rules cause more-specific profile matches to be
preferred over less-specific matches, so program portability can be
ensured by defining one lowest-common-denominator version of
the function.

1Unlike the other Cg features described in this paper, this capability is
not yet supported in a public release (as of April 2003). It is currently being
implemented and will be supported in a future Cg release.

2C++ provides a similar capability via pure virtual base classes. We
chose Java’s approach because we consider it to be cleaner and easier to
understand.



// Declare interface to lights
interface Light {

float3 direction(float3 from);
float4 illuminate(float3 p, out float3 lv);

};

// Declare object type (light shader) for point lights
struct PointLight : Light {

float3 pos, color;
float3 direction(float3 p) { return pos - p; }
float3 illuminate(float3 p, out float3 lv) {

lv = normalize(direction(p));
return color;

}
};

// Declare object type (light shader) for directional lights
struct DirectionalLight : Light {

float3 dir, color;
float3 direction(float3 p) { return dir; }
float3 illuminate(float3 p, out float3 lv) {

lv = normalize(dir);
return color;

}
};

// Main program (surface shader)
float4 main(appin IN, out float4 COUT,

uniform Light lights[]) {
...
for (int i=0; i < lights.Length; i++) { // for each light

Cl = lights[i].illuminate(IN.pos, L); // get dir/color
color += Cl * Plastic(texcolor, L, Nn, In, 30); // apply

}
COUT = color;

}

Figure 6: Cg’s interface functionality may be used to implement
separate surface and light shaders. The application must bind the
light objects to the main program prior to compilation. In this
example, the application would perform the binding by making Cg
runtime API calls to specify the size and contents of the lights array,
which is a parameter to main.

6.3.2 Constants are typeless

In C, if x is declared as float, then the expression 2.0*x is evaluated
at double precision. Often, this type promotion is not what the user
intended, and it may cause an unintended performance penalty. In
our experience, it is usually more natural to think of floating-point
constants as being typeless.

This consideration led us to change the type promotion rules
for constants. In Cg, a constant is either integer or floating-point,
and otherwise has no influence on type promotion of operators.
Thus, if y is declared as half, the expression 2.0*y is evaluated at half
precision. Users may still explicitly assign types to constants with
a suffix character (e.g. 2.0f), in which case the type promotion rules
are identical to those in C. Internally, the new constant promotion
rules are implemented by assigning a different type (cfloat or cint)
to constants that do not have an explicit type suffix. These types
always take lowest precedence in the operator type-promotion rules.

These new rules are particularly useful for developing a shader
using float variables, then later tuning the performance by selectively
changing float variables to half or fixed. This process does not require
changes to the constants used by the program.

6.3.3 No type checking for textures

The Cg system leaves the responsibility for most texture man-
agement (e.g. loading textures, specifying texture formats, etc.)

uniform samplerCUBE norm cubemap;

// For ps 1 1 profile, use cubemap to normalize
ps 1 1 float3 mynormalize(float3 v) {

return texCUBE(norm cubemap, v.xyz).xyz;
}

// For ps 2 0 profile, use stdlib routine to normalize
ps 2 0 float3 mynormalize(float3 v) {

return normalize(v);
}

Figure 7: Function overloading by hardware profile facilitates the
use of optimized versions of a function for particular hardware
platforms.

with the underlying 3D API. Thus, the Cg system has very little
information about texture types – e.g. is a particular texture an RGB
(float3) texture, or an RGBA (float4) texture? Since compile-time
type checking is not possible in this situation, the user is responsible
for insuring that Cg texture lookups are used in manner that
is consistent with the way the application loads and binds the
corresponding textures at run time. Stronger type checking would
be possible by integrating the Cg system more tightly with the 3D
API.

6.4 Runtime API

As described earlier, the Cg runtime API is composed of two
parts. The first part is independent of the 3D API and provides
a procedural interface to the compiler and its output. The second
part is layered on top of the 3D API and is used to load and bind
Cg programs, to pass uniform and varying parameters to them, and
to perform miscellaneous housekeeping tasks. These interfaces are
crucial for system usability since they provide the primary interface
between the application and the Cg system. In this section, we
discuss a few of the more interesting questions that arose in the
design of the runtime API.

6.4.1 Compound types are exploded to cross API

Cg programs may declare uniform parameters with compound types
such as structures and arrays. Typically, the application passes
the values of these parameters to the Cg program by using the Cg
runtime API. Unfortunately, most operating systems do not specify
and/or require a standard binary format for compound data types.
For example, a data structure defined in a FORTRAN program does
not have the same memory layout as the equivalent data structure
defined in a C program. Thus, it is difficult to define a natural
binary format for passing compound data structures across an API.
This problem has plagued API designers for a long time; OpenGL
finessed one aspect of it by specifying 2D matrices in terms of 1D
arrays.

There are several possible approaches to this issue. The first
is to choose a particular binary format, presumably the one used
by the dominant C/C++ compiler on the operating system. This
approach makes it difficult to use the API from other languages, and
invites cross-platform portability issues (e.g. between 32-bit and
64-bit machines). The second is to use Microsoft’s .NET common
type system [Microsoft Corp. 2003], which directly addresses this
problem, but would have restricted the use of the Cg APIs to the
.NET platform. We chose a third approach, which is to explode
compound data structures into their constituent parts to pass them
across the API. For example, a struct consisting of a float3 and a float
must be passed using one API call for the float3, and a second API
call for the float. Although this approach imposes some overhead,



it is not generally a performance bottleneck when it is used for
passing uniform values.

6.4.2 Cg system can shadow parameter values

The Cg runtime can manage many Cg programs (both vertex and
fragment) at once, each with its own uniform parameters. However,
GPU hardware can only hold a limited number of programs and
parameters at a time. Thus, the values of the active program’s
uniform parameters may be lost when a new program is loaded
into the hardware. The Cg runtime can be configured to shadow
a program’s parameters, so that the parameter values persist when
the active program is changed. Note that some, but not all, OpenGL
extensions already implement this type of shadowing in the driver.

7 CgFX

The Cg language and runtime do not provide facilities for managing
the non-programmable parts of the graphics pipeline, such as the
framebuffer tests. Since many graphics applications find it useful
to group the values for this non-programmable state with the
corresponding GPU programs, this capability is supported with a
set of language and API extensions to Cg, which we refer to as
CgFX. We do not discuss CgFX in detail in this paper, but we will
briefly summarize its additional capabilities to avoid confusion with
the base Cg language. CgFX can represent and manage:

• Functions that execute on the CPU, to perform setup
operations such as computing the inverse-transpose of the
modelview matrix

• Multi-pass rendering effects

• Configurable graphics state such as texture filtering modes
and framebuffer blend modes

• Assembly-language GPU programs

• Multiple implementations of a single shading effect

8 System Experiences

NVIDIA released a beta version of the Cg system in June 2002,
and the 1.0 version of the system in December 2002. Windows and
Linux versions of the system and its documentation are available for
download [NVIDIA Corp. 2003a]. The system is already widely
used.

The modularity of the system has proven to be valuable. From
online forums and other feedback, it is clear that some developers
use the full system, some use just the off-line compiler, and some
use Cg for vertex programs but assembly language for fragment
programs. We know that some users examine the assembly
language output from the compiler because they complain when
the compiler misses optimization opportunities. In some cases,
these users have hand-tuned the compiler’s assembly-code output
to improve performance, typically after they have reached the point
where their program produces the desired visual results.

To the best of our knowledge, our decision to omit automatic
virtualization from the system has not been a serious obstacle for
any developer using DX9-class hardware for an application that
requires real-time frame rates. In contrast, we have heard numerous
complaints about the resource limits in DX8 fragment hardware, but
we still believe that we would not have been able to virtualize DX8
hardware well enough to satisfy developers.

Researchers are already using Cg to implement non-rendering
algorithms on GPUs. Examples include fluid dynamics simulations
and reaction-diffusion simulations (Figure 8).

Figure 8: Cg has been used to compute physical simulations
on GPUs. Mark Harris at the University of North Carolina
has implemented a Navier-Stokes fluid simulation (left) and a
reaction-diffusion simulation (right).

9 Conclusion

The Cg language is a C-like language for programming GPUs.
It extends and restricts C in certain areas to support the
stream-processing model used by programmable GPUs, and to
support new data types and operations used by GPUs.

Current graphics architectures lack certain features that are
standard on CPUs. Cg reflects the limitations of these architectures
by restricting the use of standard C functionality, rather than by
introducing new syntax or control constructs. As a result, we
believe that Cg will grow to support future graphics architectures,
by relaxing the current language restrictions and restoring C
capabilities such as pointers that it currently omits.

If one considers all of the possible approaches to designing a
programming language for GPUs, it is remarkable that the recent
efforts originating at three different companies have produced such
similar designs. In part, this similarity stems from extensive
cross-pollination of ideas among the different efforts. However,
we believe that a more significant factor is the de-facto agreement
by the different system architects on the best set of choices for
a contemporary GPU programming language. Where differences
remain between between the contemporary systems, they often
stem from an obvious difference in design goals, such as support
for different 3D APIs.

We hope that this paper’s discussion of the tradeoffs that we
faced in the design of Cg will help users to better understand Cg
and the other contemporary GPU programming systems, as well
as the graphics architectures that they support. We also hope that
this distillation of our experiences will be useful for future system
architects and language designers, who will undoubtedly have to
address many of the same issues that we faced.
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