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Abstract

In the popular computer game of Tetris, the player is given a sequence of tetromino pieces
and must pack them into a rectangular gameboard initially occupied by a given configuration of
filled squares; any completely filled row of the gameboard is cleared and all pieces above it drop
by one row. We prove that in the offline version of Tetris, it is NP-complete to maximize the
number of cleared rows, maximize the number of tetrises (quadruples of rows simultaneously
filled and cleared), minimize the maximum height of an occupied square, or maximize the number
of pieces placed before the game ends. We furthermore show the extreme inapproximability of
the first and last of these objectives to within a factor of p1−ε, when given a sequence of p
pieces, and the inapproximability of the third objective to within a factor of 2−ε, for any ε > 0.
Our results hold under several variations on the rules of Tetris, including different models of
rotation, limitations on player agility, and restricted piece sets.

∗Laboratory for Computer Science; Massachusetts Institute of Technology; 200 Technology Square; Cambridge,
MA 02139, USA. Email: {edemaine,srhohen,dln}@theory.lcs.mit.edu.
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Figure 1: The tetrominoes Sq (“square”), LG (“left gun”), RG (“right gun”), LS (“left snake”), RS

(“right snake”), I (“I”), and T (“T”).

1 Introduction

Tetris [10] is a popular computer game invented by mathematician Alexey Pazhitnov in the mid-
1980s. Tetris is one of the most widespread computer games ever created. By 1988, just a few years
after its invention, it was already the best-selling game in the United States and England. Over 50
million copies have been sold worldwide. (Incidentally, Sheff [9] gives a fascinating account of the
tangled legal debate over the profits, ownership, and licensing of Tetris.)

In this paper, we embark on the study of the computational complexity of playing Tetris. We
consider the offline version of Tetris, in which the sequence of pieces that will be dropped is specified
in advance. Our main result is a proof that optimally playing offline Tetris is NP-complete, and
furthermore is highly inapproximable.

The game of Tetris. Concretely, the game of Tetris is as follows. (We give precise definitions
in Section 2, and discuss some variants on these definitions in Section 7.) We are given an initial
gameboard, which is a rectangular grid with some gridsquares filled and some empty. (In typical
Tetris implementations, the gameboard is 20-by-10, and “easy” levels have an initially empty
gameboard, while “hard” levels have non-empty initial gameboards, usually with the gridsquares
below a certain row filled independently at random.)

A sequence of tetrominoes—see Figure 1—is generated, typically probabilistically; the next piece
appears in the middle of the top row of the gameboard. The piece falls, and as it falls the player
can rotate the piece and slide it horizontally. It stops falling when it lands on a filled gridsquare,
though the player has a final opportunity to slide or rotate it before it stops moving permanently.
If, when the piece comes to rest, all gridsquares in an entire row h of the game board are filled, row
h is cleared. All rows above h fall one row lower; the top row of the gameboard is replaced by an
entirely unfilled row. As soon as a piece is fixed in place, the next piece appears at the top of the
gameboard. To assist the player, typically a one-piece lookahead is provided: when the ith piece
begins falling, the identity of the (i + 1)st piece is revealed.

A player loses when a new piece is blocked by filled gridsquares from entirely entering the
gameboard. Normally, the player can never win a Tetris game, since pieces continue to be generated
until the player loses. Thus the player’s objective is to maximize his or her score, which increases
as pieces are placed and as rows are cleared.

Our results. We introduce the natural full-information (offline) version of Tetris: we have a
deterministic, finite piece sequence, and the player knows the identity and order of all pieces that
will be presented. (Games magazine has, incidentally, posed several Tetris puzzles based on the
offline version of the game [7].) We study the offline version because its hardness captures much of
the difficulty of playing Tetris; intuitively, it is only easier to play Tetris with complete knowledge
of the future, so the difficulty of playing the offline version suggests the difficulty of playing the
online version. It also naturally generalizes the one-piece lookahead of implemented versions of
Tetris.
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It is natural to generalize the Tetris gameboard to m-by-n, since a relatively simple dynamic
program solves the case of a constant-size gameboard in time polynomial in the number of pieces.
Furthermore, in an attempt to consider the inherent difficulty of the game—and not any accidental
difficulty due to the limited reaction time of the player—we begin by allowing the player an arbitrary
number of shifts and rotations before the current piece drops in height. (We will restrict these moves
to realistic levels later.)

In this paper, we prove that it is NP-complete to optimize any of several natural objective
functions for Tetris:

• maximizing the number of rows cleared while playing the given piece sequence;

• maximizing the number of pieces placed before a loss occurs;

• maximizing the number of tetrises—the simultaneous clearing of four rows;

• minimizing the height of the highest filled gridsquare over the course of the sequence.

We also prove the extreme inapproximability of the first two (and the most natural) of these
objective functions: given an initial gameboard and a sequence of p pieces, for any constant ε > 0,
it is NP-hard to approximate to within a factor of p1−ε the maximum number of pieces that can
be placed without a loss, or the maximum number of rows that can be cleared. We also show that
it is NP-hard to approximate the minimum height of a filled gridsquare to within a factor of 2− ε.

To prove these results, we first show that the cleared-row maximization problem is NP-hard,
and then give various extensions of our reduction for the remaining objectives. Our initial proof of
hardness proceeds by a reduction from 3-Partition, in which we are given a set S of 3s integers
and a bound T , and asked to partition S into s sets of three numbers each, so that the sum of the
numbers in each set is exactly T . Intuitively, we define an initial gameboard that forces pieces to
be placed into s piles, and give a sequence of pieces so that all of the pieces associated with each
integer must be placed into the same pile. The player can clear all rows of the gameboard if and
only if all s of these piles have the same height.

A key difficulty in our reduction is that there are only a constant number of piece types, so any
interesting component of a desired NP-hard problem instance must be encoded by a sequence of
multiple pieces. The bulk of our proof of soundness is devoted to showing that, despite the decoupled
nature of a sequence of Tetris pieces, the only way to possibly clear the entire gameboard is to place
in a single pile all pieces associated with each integer.

Our reduction is robust to a wide variety of modifications to the rules of the game. In particular,
we show that our results also hold in the following settings:

• with restricted player agility—allowing only two rotation/translation moves before each piece
drops in height;

• with restricted piece sets—using {LG,LS, I,Sq} or {RG,RS, I,Sq}, plus at least one other piece;

• without any losses—i.e., with an infinitely tall gameboard;

• under a wide variety of different rotation models—including the somewhat non-intuitive model
that we have observed in real Tetris implementations.
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Related work: Tetris. This paper is, to the best of our knowledge, the first consideration of the
complexity of playing Tetris. Kostreva and Hartman [8] consider Tetris from a control-theoretic
perspective, using dynamic programming to choose the “optimal” move—defined using a heuristic
measure of the quality of a configuration. Other previous work has concentrated on the possibility
of a forced eventual loss (or a perpetual loss-avoiding strategy) in the online, infinite version of the
game. In other words, under what circumstances can the player be forced to lose, and how quickly?
Under what circumstances can the player make the game last for infinitely many moves?

Brzustowski [1] has shown a number of results on forced eventual losses, both positive and
negative. He has given a strategy for perpetually avoiding a loss in any (sufficiently large) even-
width gameboard using any one-piece pieceset, or any two of the pieces {I,Sq,RG,LG}. (The
strategies for the piecesets {I,LG}, {I,RG}, and {RG,LG} rely on the one-piece lookahead.) He has
also given such a perpetual loss-avoiding strategy for any (sufficiently large) odd-width gameboard
for the piecesets {I}, {RG}, {LG}, and {T}.

On the negative side, Brzustowski has shown that perpetual loss-avoidance is impossible for
the piecesets {RS}, {LS}, and {Sq} in odd-width boards. More fundamentally, he has proven that
in any size board, if the machine can adversarially choose the next piece (following the lookahead
piece) in reaction to the player’s moves, then the machine can force an eventual loss using any
pieceset that contains {LS,RS}. Burgiel [2] has strengthened this last result for gameboards of
width 2n for odd n, showing that an alternating sequence of LS’s and RS’s will eventually cause a
loss, regardless of the way in which the player places them. This implies that, if pieces are chosen
independently at random with a non-zero probability mass assigned to each of LS and RS, then
there is a forced eventual loss with probability one for any such gameboards.

Related work: other games and puzzles. A number of other popular one-player com-
puter games have been shown to be NP-hard, most notably Minesweeper—or, more precisely,
the Minesweeper “consistency” problem [6]. See the survey of the first author [3] for a summary of
other games and puzzles that have been studied from the perspective of computational complexity.
These results form the emerging area of algorithmic combinatorial game theory, in which many new
results have been established in the past few years.

2 Rules of Tetris

Here we rigorously define the game of Tetris, formalizing the intuition of the previous section.
While tedious, we feel that such rigor is necessary so that the many subtle nuances of Tetris
become transparent (following immediately from the rules). For concreteness, we have chosen to
give very specific rules, but in fact the remainder of this paper is robust to a variety of modifications
to these rules; in Section 7, we discuss some variations on these rules for which our results still
apply.

In particular, here we consider a particular set of rotation rules—what we call instantaneous
rotation—that, in our opinion, is the most intuitive and natural model for Tetris rotation. However,
we have observed that many Tetris implementations use a different set of rotation rules; in Section
7, we show that our results continue to hold under this observed rotation model.

The gameboard. The gameboard is a grid of m rows and n columns, indexed from bottom-to-top
and left-to-right. The 〈i, j〉th gridsquare is either unfilled (open, unoccupied) or filled (occupied).
In a legal gameboard, no row is completely filled, and there are no completely empty rows that
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Figure 2: Piece centers.

lie below any filled gridsquare. When determining the legality of certain moves, we consider all
gridsquares outside the gameboard as always-occupied sentinels.

Game pieces. The seven Tetris pieces, shown in Figure 1, are exactly those connected rectilinear
polygons that can be created by assembling four 1-by-1 gridsquares. The center of each piece is
shown in Figure 2. A piece state P is a 4-tuple, consisting of:

1. a piece type—Sq,LG,RG,LS,RS, I, or T;

2. an orientation—0◦, 90◦, 180◦, or 270◦—the number of degrees clockwise from the piece’s base
orientation (shown in Figure 1);

3. a position of the piece’s center on the gameboard, chosen from {1, . . . ,m} × {1, . . . n}. The
position of a Sq is the location of the upper-left gridsquare of the Sq, since its center falls on
the boundary of four gridsquares rather than in the interior of one;

4. the value fixed or unfixed, indicating whether the piece can continue to move.

In an initial piece state, the piece is in its base orientation, and the initial position places the highest
gridsquares of the piece into row m, and the center into column bn/2c, and the piece is unfixed.

Rotating pieces. A rotation model is a computable function R : 〈P, θ,B〉 7→ P ′, where P and
P ′ are piece states, θ ∈ {−90◦, 90◦} is the rotation angle, and B is a gameboard. We impose the
following conditions on R:

1. If P = 〈t, o, 〈i, j〉, f〉 and the rotation is legal, then P ′ = 〈t, (o + θ) mod 360◦, 〈i′, j′〉, f〉 for
some i′ and j′. If the rotation is illegal, then P ′ = P .

2. In determining the legality of a rotation, R only examines an O(1)-sized neighborhood of
the piece P—i.e., only gridsquares within a constant distance of the original position are
relevant—and depends only on the neighborhood, and not its location in the gameboard.

3. If all the gridsquares in the neighborhood of P are unfilled, then the rotation is legal.

4. If the rotation is legal, then P ′ does not occupy any gridsquare already filled in B.

We will impose additional constraints on R in Section 5 to restrict us to reasonable rotation models.
Intuitively, a reasonable rotation model simply allows for the turning of a piece on the board without
any unnatural powers of translation, such as “jumping” to a distant point in the gameboard.
Our proof assumes an arbitrary reasonable rotation model; in Section 7, we discuss a number of
important reasonable rotation models.

For now, we will consider the instantaneous rotation model : fix the piece center (shown in
Figure 2), and rotate the piece around that point. The position after rotation is unchanged—i.e.,
〈i′, j′〉 = 〈i, j〉. A rotation is illegal only if it violates Condition 4.
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Playing the game. No moves are legal for a piece P = 〈t, o, 〈i, j〉,fixed 〉. The following moves
are legal for a piece P = 〈t, o, 〈i, j〉, unfixed 〉, with current gameboard B:

1. A clockwise rotation. The new piece state is R(P, 90◦, B).

2. A counterclockwise rotation. The new state is R(P,−90◦, B).

3. A slide to the left. If the gridsquares to the left of the piece are open in B, we can translate
P to the left by one column. The new piece state is 〈t, o, 〈i, j − 1〉, unfixed〉.

4. A slide to the right, similarly. The new piece state is 〈t, o, 〈i, j + 1〉, unfixed 〉.

5. A drop by one row, if all of the gridsquares beneath the piece are open in B. The new piece
state is 〈t, o, 〈i − 1, j〉, unfixed 〉.

6. A fix, if at least one gridsquare below the piece is filled in B. The new piece state is
〈t, o, 〈i, j〉,fixed 〉.

A trajectory σ of a piece P is a sequence of legal moves starting from an initial state and ending
with a fix move. The result of a trajectory for a piece P on gameboard B is a new gameboard B′,
defined as follows:

1. The new gameboard B′ is initially B with the gridsquares of P filled.

2. If the piece is fixed so that, for some row r, every gridsquare in row r of B′ is full, then row r
is cleared. For each r′ ≥ r, replace row r′ of B′ by row r′ + 1 of B′. Row m of B′ is an empty
row. Multiple rows may be cleared by the fixing of a single piece.

3. If the next piece’s initial state is blocked in B′, the game ends and the player loses.

For a game 〈B0, P1, . . . , Pp〉, a trajectory sequence Σ is a sequence B0, σ1, B1, . . . , σp, Bp so that,
for each i, the trajectory σi for piece Pi on gameboard Bi−1 results in gameboard Bi. However, if
there is a losing move σq for some q ≤ p then the sequence Σ terminates at Bq instead of Bp.

The Tetris problem. We will consider a variety of different objectives for Tetris (e.g., maxi-
mizing the number of cleared rows, maximizing the number of pieces placed without a loss, etc.)
For the decision version of a particular objective Φ, the Tetris problem Tetris[Φ] is formally as
follows:

Given: A Tetris game G = 〈B,P1, P2, . . . , Pp〉.

Output: Does there exist a trajectory sequence Σ so that Φ(G,Σ) holds?

We say that an objective function Φ is acyclic when, for all games G, if there is a trajectory sequence
Σ so that Φ(G,Σ) holds, then there is a trajectory sequence Σ′ so that Φ(G,Σ′) holds and there
are no repeated piece states in Σ′. Most interesting Tetris objective functions are acyclic; in fact,
many depend only on the final placement of each piece.

An objective function Φ is checkable when, given a game G and a trajectory sequence Σ, we
can compute the truth value of Φ(G,Σ) in time poly(|G|, |Σ|).

Theorem 2.1 For any checkable acyclic objective Φ we have Tetris[Φ] ∈ NP.
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Proof. We are given a Tetris game 〈B,P1, . . . , Pp〉. Here is an NP algorithm for Tetris[Φ]:
Guess an acyclic trajectory sequence Σ, and confirm that Σ is a legal, acyclic trajectory in

time poly(|Σ|). Confirming that all rotations in Σ are legal depends on the computability of the
rotation function, and the fact that legality can only depend on the constant-sized neighborhood
of the piece.

Since Σ is acyclic, each of its p trajectories can only contain at most 4 · |B|+ 1 states—unfixed
once in each position and each orientation, and one final fixed state. Thus |Σ| = poly(G). Since Φ
is checkable, we can then in time poly(|G|, |Σ|) = poly(|G|) verify that Φ(G,Σ) holds, and since Φ
is acyclic, guessing an acyclic trajectory sequence Σ suffices. 2

The Φ(G,Σ) that we will initially concern ourselves with is k-cleared-rows(G,Σ): in the game G,
does Σ clear at least k rows without incurring a loss? In Section 7, we will consider a variety of
other objective functions.

Lemma 2.2 The objective k-cleared-rows is checkable and acyclic.

Proof. The objective is acyclic because it only depends on the fixed piece state at the end of each
trajectory, so the path in the trajectory is irrelevant; it is checkable since it results from a simple
scan of the status of the gameboard after each trajectory in Σ. 2

3 The Reduction

In this section, we define a mapping from instances of 3-Partition [5, p. 224] to instances of
Tetris[k-cleared-rows]. Recall the 3-Partition problem:

Given: A sequence a1, . . . , a3s of non-negative integers and a non-negative integer T , so that
T/4 < ai < T/2 for all 1 ≤ i ≤ 3s and so that

∑3s
i=1 ai = sT .

Output: Can {a1, . . . , a3s} be partitioned into s disjoint subsets A1, . . . , As so that, for all 1 ≤
j ≤ s, we have

∑

ai∈Aj
ai = T ?

We limit our attention to 3-Partition instances that obey the following properties, for technical
reasons that will later become apparent:

1. For any set S ⊆ {a1, . . . , a3s}, if
∑

ai∈S ai = T then |S| = 3.

2. T is even.

3. If
∑

ai∈Aj
ai6 = T then

∣

∣

∣
T −

∑

ai∈Aj
ai

∣

∣

∣
≥ 3s.

We can map an arbitrary 3-Partition instance into one obeying these properties by multiply-
ing each ai and T by 4s. This mapping does not affect whether or not the instance has a valid
3-partition. Property (2) is obviously guaranteed; for property (3), note that, before the multipli-
cation, if

∑

ai∈Aj
ai6 = T then |T −

∑

ai∈Aj
ai| ≥ 1 since all values are integral, and multiplying by

4s multiplies differences by 4s as well. For Property (1), note that we still have T/4 < ai < T/2,
so it is still the case that if

∑

ai∈S ai = T then |S| = 3.
We choose to reduce from this problem because it is NP-hard to solve 3-Partition even if the

inputs ai and T are provided in unary:

Theorem 3.1 (Garey and Johnson [4]) 3-Partition is NP-complete in the strong sense. 2
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Figure 3: The initial gameboard for a Tetris game mapped from an instance of 3-Partition.

Given a 3-Partition instance P = 〈a1, . . . , a3s, T 〉 obeying the three conditions above, we will
produce a Tetris game G(P) whose gameboard can be completely cleared precisely if P is a “yes”
instance of 3-Partition.

The initial gameboard is shown in Figure 3. Intuitively, there are s buckets corresponding to
the sets A1, . . . , As for the 3-Partition problem. The piece sequence will consist of a number of
tetrominoes corresponding to each ai, chosen carefully so that all pieces corresponding to ai must
be placed into the same bucket. There is a legal 3-partition for {a1, . . . , a3s} exactly when the piles
of pieces in each bucket have the same height. The last three columns of the gameboard form a
lock which prevents any rows from being cleared until the end of the piece sequence; if all buckets
are filled exactly to the same height, then the entire board can be cleared using the last portion of
our piece sequence.

Formally, our game G consists of the following:

Initial board: Our gameboard will have 6T +22+(3s+O(1)) rows and 6s+3 columns. Intuitively,
the factor of six in the height is because each ai will be represented by ai+1 blocks of six rows
and six columns each; since the set Aj = {ai, aj , ak} sums to T , this is 6(T + 3) = 6T + 18.
In addition to these 6T + 18 rows, there are four rows at the bottom ensuring that the initial
blocks are placed correctly.

The top 3s + O(1) rows—the O(1) is exactly the size of the neighborhood in the rotation
model—are initially empty, and are there solely as a staging area in which to rotate and
translate pieces before they fall into the bottom 6T + 22 rows. We will not mention them
again in the construction (and, below, the highest row is the (6T + 22)nd). Our choice of
3s + O(1) as the number of staging rows will be discussed in Section 7.

The remainder of the initial board can be thought of in s + 1 logical pieces, the first s of
which are six columns wide and the last of which is three columns wide. The first s logical
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pieces are buckets, arranged in the following six-column pattern:

• the first and second columns are empty except that the four lowest rows are full;

• the third column is completely empty;

• the fourth and fifth columns are full in each row h 6≡ 5 (mod 6) and empty in each
h ≡ 5 (mod 6);

• the sixth column is completely full;

We call a row r ≡ 5 (mod 6) a notch row, and refer to the unfilled rows of columns 4 and 5
of row r as a notch.

The last logical piece is a three-column lock, and consists of the following:

• the first column is full except that the highest and second-highest rows are empty;

• the second column is full except that the topmost row is empty;

• the third column is empty except that the second-highest row is full.

Pieces: The sequence of pieces for our game consists of a sequence of pieces for each ai, followed
by a number of additional pieces after all the ai’s. For each integer a1, . . . , a3s, we have the
following pieces:

• the initiator, which consists of the sequence 〈I,LG,Sq〉;

• the filler, which consists of the sequence 〈LG,LS,LG,LG,Sq〉 repeated ai times;

• the terminator, which consists of the sequence 〈Sq,Sq〉.

These pieces are given for a1, a2, etc., in exactly this order. After the pieces corresponding
to a3s, we have the following pieces:

• s successive I’s;

• one RG;

• 3T/2 + 5 successive I’s. (Since we enforced that T is even, this is an integral number of
pieces.)

Theorem 3.2 The game G(P) is polynomial in the size of P.

Proof. The gameboard has size 6T + 22 + 3s + O(1) by 6s + 3, and the total number of pieces is

3s
∑

i=1

[3 + 5ai + 2] + s + 1 +

(

3T

2
+ 5

)

= 16s + 5sT +
3T

2
+ 6.

The ai’s and T are represented in unary, so the size of the game is polynomial. 2
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Figure 4: A valid sequence of moves within a bucket.

(a) (b) (c)

· · ·
(d) (e) (f)

Figure 5: Finishing a valid move sequence.

4 Completeness

Here we show the easier direction of the correctness of our reduction: for a “yes” instance of
3-Partition, we can clear the entire gameboard.

Theorem 4.1 (Completeness) For any “yes” instance P of 3-Partition, there is a trajectory
sequence Σ that clears the entire gameboard of G(P) without triggering a loss.

Proof. Since P is a “yes” instance, there is a partitioning of the ai’s into sets A1, . . . , As so that
∑

ai∈Aj
ai = T . We have ensured that |Aj | = 3 for all j. Place all pieces associated with set

Aj = {x, y, z} into the jth bucket of the gameboard, as illustrated in Figure 4.
Figure 5(a) shows the configuration after all of the pieces associated with a1, . . . , a3s have been

placed, as follows. After all pieces associated with the number x have been placed into bucket j,
the first 4 + 6x + 2 rows of bucket j are full, and the left-hand two columns of bucket j are filled
four rows above that. The pieces associated with the number y fill the next 4 + 6y + 2 rows, and

10



those with z the next 4 + 6z + 2 rows, leaving again two columns with four additional rows filled.
So the total number of rows filled after the “numbers” is 18+6(x+y +z) = 18+6T . Doing this for
each bucket j yields a configuration in which all buckets are filled up to row 18+ 6T , with columns
one and two filled up to row 22 + 6T .

We next get s successive I’s in the sequence. We produce the configuration in Figure 5(b) by
dropping one of the I’s into the third column of each bucket, to fill rows 19 + 6T through 22 + 6T .
Now the configuration has the first 22+6T rows filled in all of the buckets, and the lock is untouched.

Next we get an RG. Drop it into the slot in the lock, yielding the configuration of Figure 5(c);
the first two rows are then cleared. In the resulting configuration, the first 20+6T rows of the first
6s + 2 columns are full, and the last column is completely empty.

Figure 5(d–f) shows the final stage of the sequence, as the 3T/2 + 5 successive I’s arrive.
Drop each into the last column of the lock. Each of the I’s clears four rows; in total, this clears
4 · (3T/2 + 5) = 6T + 20 rows, clearing the entire the gameboard. The first, second, and last of
these I’s are illustrated in Figure 5(d–f). 2

5 Soundness

Call valid any trajectory sequence that clears 6T + 22 rows in G(P). We will refer to a move or
trajectory as valid if it can appear in a valid trajectory sequence. In this section, we show that
the existence of a valid strategy for the Tetris game G(P) implies that P is a “yes” instance of
3-Partition.

We will often omit reference to G(P), and refer to its parts simply as the gameboard and the
piece sequence.

5.1 Basic Counting

The soundness of our reduction is fundamentally based upon the observation that, in order to win
G(P), we must fruitfully use every gridsquare in the piece sequence. There are exactly as many
unfilled gridsquares in the bottom 6T + 22 rows of the gameboard as there are gridsquares in the
piece sequence; thus, in order to clear the gameboard, we can never place any piece so that it
extends beyond the (6T + 22)nd row.

Fact 5.1 The gameboard initially has 64s + 20sT + 6T + 24 unfilled gridsquares in the bottom
6T + 22 rows. Of these, there are 64s + 20sT unfilled gridsquares in the buckets, and 6T + 24
unfilled gridsquares in the lock.

Proof. In each bucket, there are exactly 6T +18, 6T +18, 6T +22, and 0 unfilled gridsquares in the
first, second, third, and sixth columns, respectively. The fourth and fifth columns are full in each
row h 6≡ 5 (mod 6) and empty in each h ≡ 5 (mod 6), so the first 6T +18 rows are exactly one-sixth
unfilled; the four highest rows are filled since 6T + 23 ≡ 5 (mod 6). Thus there are exactly T + 3
unfilled gridsquares in the fourth and fifth columns, and, in total, 20T +64 unfilled gridsquares per
bucket. Therefore, buckets account for exactly 64s + 20sT unfilled gridsquares.

In the lock, the first column has exactly two unfilled gridsquares, the second column has exactly
one unfilled gridsquare, and the third column has exactly 6T + 21 unfilled gridsquares. Thus there
are 2 + 1 + 6T + 21 = 6T + 24 total in the lock.

Overall, then we have 64s + 20sT + 6T + 24 unfilled gridsquares. 2
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Fact 5.2 The total number of gridsquares in the piece sequence is exactly 64s + 20sT + 6T + 24.
Of these, there are 64s + 20sT gridsquares in sequence of pieces up to (but not including) the RG,
and 6T + 24 gridsquares in the pieces starting at (and including) the RG.

Proof. As we calculated in the proof of Lemma 3.2, there are 16s + 5sT + 3T
2 + 6 total pieces in

the sequence, of which the last 16s + 5sT precede the RG. Each covers exactly four gridsquares, so
the total number of gridsquares in the piece sequence is 64s + 20sT + 6T + 24, of which 64s + 20sT
precede the RG. 2

Corollary 5.3 Any move that places a filled gridsquare above row 6T + 22 is invalid.

Proof. The total number of filled gridsquares in the input sequence and initial gameboard combined
is exactly the number of gridsquares in 6T + 22 rows. Thus to clear 6T + 22 rows, every filled
gridsquare must be in a cleared row. In particular, we must clear the bottom 6T + 22 rows (since
each of these rows has at least one filled gridsquare initially), and cannot place a filled gridsquare
above the (6T + 22)nd row. 2

5.2 Invalid Moves and Configurations

In this section, we describe general types of configurations from which the game can never be won.
In Section 5.4, we will use these results to show that the only possible valid strategy is that of
Section 4.

5.2.1 Security of the Lock

Lemma 5.4 In any valid strategy, none of the pieces {LG, I,LS,Sq} can be the first piece placed in
a lock column.

Proof. It is easy to verify that none of {LG, I,LS,Sq} can be placed in such a way to fill even one of
the unfilled gridsquares in the lock without also filling a gridsquare beyond the (6T + 22)nd row.
Therefore, by Corollary 5.3, such a move is invalid. 2

There are two important corollaries of this simple lemma:

Corollary 5.5 In any valid strategy, no rows are cleared before the RG.

Proof. No rows can be cleared until at least one piece enters the lock columns; by Lemma 5.4, the
first piece to do so must be the RG. 2

Corollary 5.6 In any valid strategy:
1. all gridsquares of all pieces preceding the RG must all be placed into buckets, filling all empty

bucket gridsquares.
2. all gridsquares of all pieces starting with (and including) the RG must be placed into the lock

columns, filling all empty lock gridsquares.

Proof. Immediate from Lemma 5.4, Corollary 5.3, and Facts 5.1 and 5.2. 2

In the remainder of this section, we will only consider move sequences that obey these corollaries.
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Figure 6: An unapproachable bucket.

5.2.2 Definition of Unfillable Buckets

Call a bucket unfillable if it cannot be filled completely using arbitrarily many pieces from the set
{LG,LS,Sq, I}.

Lemma 5.7 In any valid strategy, no configuration with an unfillable bucket arises.

Proof. By Corollary 5.6, all gridsquares of pieces preceding RG must go into buckets, and Facts
5.1 and 5.2 imply that there are exactly the same number of unfilled bucket gridsquares as pre-
RG gridsquares in the sequence. If we do not completely fill each bucket, then at least one of
these gridsquares will not go into a bucket, violating Corollary 5.6. (Since no rows are cleared,
an unfillable configuration can never be made fillable again, and therefore makes the trajectory
sequence invalid.) 2

Here we outline a collection of buckets which, if they arise in play, prevent G(P) from being
won. See Figures 6 and 7.

Unapproachable Buckets. In Figure 6, we show an unapproachable bucket. This bucket, which
can arise during play, is unfillable; in fact, even without a notion of gravity and piece movements,
it is impossible even to tile such a bucket completely using {I,LG,LS,Sq}.

Lemma 5.8 An unapproachable bucket is unfillable.

Proof. Suppose not, and consider a filling of a bucket that was unapproachable. Let row n be the
first notch row above the unapproachable part of the bucket.

The notch in row n must have been filled by either a LG or an I, either of which also fills the
gridsquare in the third column of row n:

However, the gridsquare denoted by (†) can only be filled by a LG or LS (and an LS only in the
first case), and either one creates an region that cannot be filled by any Tetris piece:
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Figure 7: Some unfillable buckets: (a) a hole, (b) a spurned notch, (c) a balconied 011-floored
notch, (d) a balconied 110-floored notch, (e) a balconied 111-floored notch, (f) a balconied (α 6≡4 0)-
veranda in non-notch rows, (g) a balconied 2-veranda, (h) a balconied unfilled sub-notch rectangle,
(i) a balconied flat-bottomed 2/3-ceiling discrepancy, (j) a balconied notch-spanning 2/3-ceiling
discrepancy.

Thus there was no such filling of the bucket, and unapproachable buckets are unfillable. 2

Holes. A hole is an unfilled gridsquare at height h in some bucket so that there is a contiguous
series of filled gridsquares separating that gridsquare from the empty rows above the buckets. (No
piece can ever fill the hole.)

Spurned notches. A spurned notch is a bucket in which, for some notch row r, (1) the two
gridsquares in the notch are not filled, and (2) the gridsquare in the second column of row r is
filled. (The filled gridsquare in the second column prevents any piece from entering the notch.)

Balconied buckets. A balcony is a bucket in which, for some row r, two of the three gridsquares
in row r are filled. Intuitively, the balcony prevents any piece other than I from “getting past” row
r, which means that any unfilled gridsquares below r must be filled entirely using I’s. Thus any
bucket with a balcony lying over an area that cannot be filled entirely by I’s is unfillable.

Call a α-veranda an α-long maximal run of consecutive unfilled gridsquares in a column.
We claim that none of the following buckets can be filled using only I’s if there is a balcony in

row r:
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1. a balconied 111-floored notch, 011-floored notch, or 110-floored notch.

For some row h < r where h contains an unfilled notch, the three gridsquares in row h − 1
are all filled (for 111-floored notch), or the second and third are filled (for 011-floored notch),
or the first and second are filled (110-floored notch).

The first two are unfillable because an I cannot rotate into the notch; the last is because
filling the notch creates a hole, and finishing row h− 1 creates a 111-floored notch (or a hole,
if filling the third column of row h − 1 simultaneously fills the third column of row h).

2. a balconied (α 6≡4 0)-veranda in non-notch rows or balconied 2-veranda.

For some row h < r, we have (1) h is the highest unfilled gridsquare in a α-veranda which
spans no unfilled notch rows (i.e., only non-notch rows and notch rows in which the notch is
already filled), and α 6≡ 0 (mod 4), or (2) there is a 2-veranda in the hth and (h + 1)st rows.

No α-veranda for α 6≡ 0 (mod 4) can be filled by any number of vertical I’s, and a horizontal I

will only fit in a notch row. For the balconied (α 6≡4 0)-veranda in non-notch rows, there are
no relevant notch rows; for a 2-veranda that spans a notch row, filling that notch can only
leave a balconied 1-veranda in non-notch rows.

3. a balconied unfilled sub-notch rectangle.

There is an unfilled notch at height h < r, and, for column i ∈ {2, 3}, and some 1 ≤ j ≤ 3,
we have the following in column i: the gridsquares at heights h, h − 1, . . . , h − j are unfilled,
and the gridsquare at height h − j − 1 is filled.

The notch cannot be filled without creating an balconied α-veranda in non-notch rows, for
1 ≤ α ≤ 3, and any vertically-placed I in the second or third columns creates a spurned notch
or a hole.

4. a balconied flat-bottomed 2/3-ceiling discrepancy or a notch-spanning 2/3-ceiling discrepancy.

In a balconied flat-bottomed 2/3-ceiling discrepancy, for some α ≥ 1, some 1 ≤ β ≤ 3, and
some row h < r, we have the following: in both columns two and three, the gridsquares
between rows h and h + α inclusive are empty, and the gridsquares in rows h− 1 are full. In
column two (respectively, column three), rows h + α + 1, . . . , h + α + β are also empty, and
the gridsquare in row h + α + β + 1 is full. In column three (respectively, column two), the
gridsquare in row h + α + 1 is full.

A balconied notch-spanning 2/3-ceiling discrepancy is just like the above, with the following
exceptions: (1) we eliminate the requirement that the second and third gridsquares of row h−1
be full, and (2) we add the requirement that there be an unfilled notch in rows h, . . . , h + α.

For a balconied flat-bottomed 2/3-ceiling discrepancy, since β 6≡ 0 (mod 4), the empty grid-
squares in columns two and three cannot both be filled by vertically-oriented I’s, and any
horizontally-oriented I’s placed into notches in these rows fill one gridsquare in both columns,
and thus do not resolve this discrepancy. For a balconied notch-spanning 2/3-ceiling discrep-
ancy, we must fill the notch with a horizontal I; once we have done so, the result is a balconied
flat-bottomed 2/3-ceiling discrepancy.

These arguments are formalized in Appendix B.
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5.3 Reasonable Rotation Models

Which moves are legal, and therefore which instances have valid trajectory sequences, depends on
certain properties of the rotation model. So far our only mention of the details of our rotation
model has been in the intuition of Section 5.2.2; here we formalize the dependence on the details
of the model. Call a rotation model reasonable if it satisfies the following four conditions:

1. A piece cannot “jump” from one bucket to another, or into a disconnected region.

2. An LG cannot enter a notch if the gridsquare in the second column of the notch row is filled.

3. For any balcony at height h with the ith column empty in the balcony, the only gridsquares
at height h′ ≤ h that can be filled by any piece other than an I are those in the ith column
in rows h and h − 1.

4. An I cannot enter a notch if the gridsquares in the second and third columns of the row
immediately beneath the notch row are filled.

These four conditions are the only ones that we rely on, so this is the only place where we depend
on the details of the rotation model. Thus, to show that our reduction holds for any particular
rotation model, it suffices to prove that the model is reasonable.

Lemma 5.9 In any reasonable rotation model, a configuration with a bucket containing any of the
following is unfillable: (1) a hole, (2) a spurned notch, (3) a balconied 110-floored notch, 011-floored
notch, or 110-floored notch, (4) a balconied unfilled sub-notch rectangle, (5) a balconied (α 6≡4 0)-
veranda in non-notch rows, (6) a balconied 2-veranda, (7) a balconied flat-bottomed 2/3-ceiling
discrepancy, and (8) a balconied notch-spanning 2/3-ceiling discrepancy. 2

Lemma 5.10 The instantaneous rotation model of Section 2 is reasonable. 2

We prove Lemmas 5.9 and 5.10 in Appendices B and A, respectively. The proof of Lemma 5.9
formalizes the intuition of the previous section, explaining why we cannot completely fill each of
these buckets. The proof of Lemma 5.10 simply checks the conditions of reasonability.

5.4 The Only Way to Play ...

Armed with the results from the previous section, we will show that the only valid moves are
those in which we play correctly according to the sequence described in Section 4. We assume (by
Corollary 5.4) that no pieces are placed into the lock columns until the RG.

In Figure 8, we give a collection of buckets which can arise during play. We call unprepped a
bucket, as in (a) or (b), which is filled up to the base of a notch except the top four rows of exactly
one of the first and third columns are unfilled. A bucket is overflat, as in (c), if it is exactly filled up
the row above the top of a notch. A bucket is a tall-plateau as in (d), if it has only the first column
unfilled in the nine rows starting one row beneath a notch. Finally, a bucket is trigger-happy if it
is unfilled in exactly the row beneath a notch row plus the third column of row below that.

Call a configuration unprepped if each of its buckets is unprepped. Call a configuration one-x
(respectively, one-x-one-y) if exactly one of its buckets is of type x (respectively, one each of types
x and y) and the rest are unprepped.

Lemma 5.11 (Initiator Soundness) In an unprepped configuration, the only possibly valid strat-
egy for 〈I,LG,Sq〉 is to place all three pieces in some bucket to produce an overflat bucket, yielding
a one-overflat configuration. 2
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Figure 8: The possibly valid buckets: (a) and (b) unprepped, (c) overflat, (d) tall-plateau, (e)
trigger-happy.

Lemma 5.12 (Filler Soundness) For the sequence 〈LG,LS,LG,LG,Sq〉:

1. In a one-overflat configuration, the only possibly valid strategy is either (1) to place all pieces
in the overflat bucket to produce an overflat bucket, yielding a one-overflat configuration, or
(2) to place 〈LG,LS〉 into the overflat bucket and 〈LG,LG,Sq〉 in an unprepped bucket, yielding
a one-tall-plateau-one-trigger-happy configuration.

2. In a one-tall-plateau-one-trigger-happy configuration, there is no valid strategy. 2

Lemma 5.13 (Terminator Soundness) For the sequence 〈Sq,Sq〉,

1. In a one-overflat configuration, the only possibly valid strategy is to place both pieces in the
overflat bucket to produce an unprepped bucket, yielding an unprepped configuration.

2. In a one-tall-plateau-one-trigger-happy configuration, there is no valid strategy. 2

The proofs of these propositions, found in Appendix C, all follow the same (tedious) outline: we ex-
haustively enumerate all possible moves that can be made in the initial configuration using the given
pieces, and show that, except for the “correct” moves leading to the stated final configuration(s),
each move yields an unfillable configuration, in the sense of Lemma 5.9.

Lemma 5.14 For any r ≥ 0, in an unprepped configuration, the only possibly valid strategy for
the sequence

I,LG,Sq, r × 〈LG,LS,LG,LG,Sq〉,Sq,Sq

is to place all of the pieces into a single bucket, yielding an unprepped configuration.

Proof. By Lemma 5.11, the only valid moves for the initial 〈I,LG,Sq〉 place them all in some bucket,
making it overflat. By induction on r and by Lemma 5.12, each successive 〈LG,LS,LG,LG,Sq〉 must
be placed into the same bucket, yielding either a one-overflat or one-tall-plateau-one-trigger-happy
configuration. Furthermore, if a one-tall-plateau-one-trigger-happy arises, then the next pieces
(another 〈LG,LS,LG,LG,Sq〉 or a 〈Sq,Sq〉) cannot be validly placed. By Lemma 5.13, the final
pieces 〈Sq,Sq〉 must go into the same bucket, making it—and the configuration—unprepped. 2
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Proposition 5.15 Consider an unprepped configuration with exactly 4s total unfilled gridsquares
in all buckets. Then there is a winning strategy for s successive I’s only if there are exactly four
unfilled gridsquares per bucket, and this strategy is to place one in each bucket to fill it up to the
(6T + 22)nd row.

Proof. If there are fewer than four unfilled gridsquares in any bucket, then the initial unprepped
configuration must have a filled gridsquare above the (6T +22)nd row. Thus there is a valid strategy
only if there are exactly four unfilled gridsquares in each bucket.

In this configuration, any placement of the I’s other than one per bucket would fill a gridsquare
beyond the (6T + 22)nd row. 2

Theorem 5.16 (Soundness) If there is a valid strategy for G(P), then P is a “yes” instance of
3-Partition.

Proof. If there is a valid strategy for G(P), then by Corollary 5.6, there is a way of placing all
pieces preceding the RG into buckets to exactly fill all the empty bucket gridsquares. By Lemma
5.14, for each number ai, we must place all of the pieces associated with ai into a single bucket,
yielding an unprepped bucket. Thus, after the pieces associated with a1, . . . , a3s have been placed,
the result is an unprepped configuration with a total of 4s unfilled gridsquares in the buckets. By
Proposition 5.15, we place exactly one I in each of these buckets to fill it up to the (6T + 22)nd
row. Thus after the numbers, each bucket must have been completely filled up to the (6T + 18)th
row, with two of the three columns filled up to the (6T + 22)nd row.

Define Aj to be the set of ai’s so that all the pieces associated with ai are placed into bucket
j. The number of unfilled gridsquares in bucket j, by Fact 5.1, is 20T + 64. Thus the number
of gridsquares filled by the pieces associated with ai ∈ Aj must be exactly 20T + 60, and the
last four gridsquares in the bucket must have be filled by the I. The total number of gridsquares
associated with the sequence corresponding to ai is 4 · [3 + 5ai + 2] = 20ai + 20, by Fact 5.2. Thus
the total number of gridsquares associated with numbers ai ∈ Aj is

∑

ai∈Aj
(20ai + 20) + 4. Thus

20T + 60 =
∑

ai∈Aj
(20ai + 20). Recall from Section 3 that we chose the ai’s and T so that the

following facts hold:

1. if
∑

ai∈Aj
ai = T then |Aj | = 3;

2. if
∑

ai∈Aj
ai6 = T then

∣

∣

∣
T −

∑

ai∈Aj
ai

∣

∣

∣
≥ 3s.

Then 20T + 60 =
∑

ai∈Aj
(20ai + 20) implies that

∑

ai∈Aj
ai = T and thus that |Aj | = 3.

This holds for all j, so the sets A1, . . . , As are a valid 3-partition. Thus P is indeed a “yes”
instance of 3-Partition. 2

Theorem 5.17 Tetris[max-cleared-rows] is NP-complete.

Proof. Immediate from Lemmas 2.2 and 5.10 and Theorems 2.1, 3.1, 3.2, 4.1, and 5.16. 2

6 NP-Completeness for Other Objectives and Inapproximability

In our original definition, we considered the maximization of the number of rows cleared over the
course of play. This is a fundamental component of a player’s score, but in fact the score may be
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more closely aligned with the number of tetrises—that is, the number of times during play that
four rows are cleared simultaneously, by the vertical placement of an I—that occur during play.
(Maximizing tetrises is a typical goal in real play.)

Another type of metric—considered by Brzustowski [1] and Burgiel [2], for example—is that of
survival. How many pieces can be placed before a loss must occur?

Define k-tetrises(G,Σ), h-height-filled(G,Σ), and p-placed-pieces(G,Σ), respectively, as the follow-
ing objectives: in the game G, does Σ, respectively, contain at least k tetrises, never fill a gridsquare
above height h, and place at least p pieces before losing?

In this section, we describe reductions extending that of Section 3 to establish the hardness of
optimizing each of these objectives. In Section 6.3, we give results on the hardness of approximating
the number of rows cleared and the number of pieces survived. Note that all of these objectives
are checkable and acyclic, and therefore the corresponding problems are in NP.

6.1 Maximizing Tetrises

We use a reduction very similar to that of Section 3, as shown in Figure 9(a). The new game is as
follows:

• The top 6T + 22 + 3s + O(1) rows of the gameboard are exactly the same as in our previous
reduction. We add four rows below these, entirely full except in the sixth column.

• The piece sequence is exactly the same as in the previous reduction, with a single I appended.

Our gameboard, shown in Figure 9(a), is that of Section 3, augmented with four new bottom rows
that are full in all but the sixth column. We append a single I to our previous piece sequence.

For a “yes” instance of 3-Partition—namely, one in which we can clear the top 6T + 22 rows
using the original part of the piece sequence—(6T + 20)/4 + 1 tetrises are achievable. (The last
occurs when the appended I is placed into the new bottom rows.)

For a “no” instance, we cannot clear the top 6T + 22 rows using the original pieces, and since
the sixth column is full in all of the original rows, we cannot clear the bottom four rows with the
last I in the sequence. Thus we clear at most 6T + 22 rows. This implies that there were at most
(6T + 20)/4 < (6T + 20)/4 + 1 tetrises.

Therefore we can achieve (6T + 24)/4 tetrises just in the case that the top 6T + 22 rows can be
cleared by the first part of the sequence, which occurs exactly when the 3-Partition instance is a
“yes” instance. Therefore it is NP-hard to maximize the number of tetrises achieved.

Theorem 6.1 Tetris[max-tetrises] is NP-complete. 2

6.2 Maximizing Lifetime

Our original reduction yields some initial intuition on the hardness of maximizing lifetime. In
the “yes” case of 3-Partition, there is a trajectory sequence that fills no gridsquares above the
(6T + 22)nd row, while in the “no” case we must fill some gridsquare in the (6T + 23)rd row:

Theorem 6.2 Tetris[min-height-filled] is NP-complete. 2

However, this does not immediately imply the hardness of maximizing the number of pieces that
the player can place without losing, because Theorem 6.2 only applies for certain heights—and, in
particular, does not apply for height m (the top row of the gameboard), because our trajectory
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(a) (b)

Figure 9: The initial gameboards showing hardness for (a) maximizing tetrises and (b) maximizing
survival time. The top of these gameboards is an exact reproduction of our previous reduction.

sequence from Section 4 requires some operating space above the (6T +22)nd row for rotations and
translations.

To show the hardness of maximizing survival time, we need to do some more work. We augment
our previous reduction as shown in Figure 9(b). Intuitively, we have created a large area at the
bottom of the gameboard that can admit a large number of Sq’s, but we place a lock so that
Sq’s can reach this area only if the gameboard of the original reduction is cleared. Crucially, the
gameboard has odd width, so after a large number of Sq’s a loss must occur.

Our new gameboard consists of the following layers, for a value r to be determined below:

• The top 6T + 22 + 3s + O(1) rows are exactly the same as in our previous reduction, with
the addition of four completely-filled columns on the right-hand side of the gameboard.

• The two next-highest rows form a second lock, preventing access to the rows beneath. This
lock requires a RG to be unlocked, just as in the lock columns at the top of the previous
reduction. The unfilled squares in the lock are in the four new columns.

• The bottom r rows form a reservoir, and are empty in all columns but the first.

The gameboard has 6T + 3s + r + O(1) rows and 6s + 7 columns. Let A = O(Ts2) be the total
area in and above the lock rows, and let R = r(6s + 6) be the total initially unfilled area in the
reservoir.

Our piece sequence is augmented as follows: first we have all pieces of our original reduction,
then a single RG, and finally R/4 successive Sq’s.

For the moment, choose r = poly(T, s) so that R ≥ 2A + 1.
In the “yes” case of 3-Partition, the first part of the sequence can be used to entirely clear

the 6T +22 rows of the original gameboard. The RG clears the second lock, and the R/4 successive
Sq’s can then be packed into the reservoir to clear all of the reservoir rows.

In the “no” case of 3-Partition, the first part of the sequence cannot entirely clear the top
6T + 22 rows of the gameboard. Since all rows above the second lock are filled, this means that
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the RG cannot unlock the reservoir, and crucially the RG is the last chance to do so—no number
of Sq’s can ever subsequently clear the lock rows. We claim that within A/2 + 1 Sq’s (which cover
2A + 4 gridsquares), a loss will occur. Since there are an odd number of columns, only rows that
initially contain an odd number of filled gridsquares can be cleared by a sequence of Sq’s; thus each
row can be cleared at most once in the Sq sequence. In order to survive 2A + 4 gridsquares from
a Sq sequence, at least one row must be cleared more than once. Therefore after A/2 + 1 ≤ R/4
successive Sq’s, a loss must occur.

Theorem 6.3 Tetris[max-placed-pieces] is NP-complete. 2

6.3 Hardness of Approximation

By modifying the reduction of Theorem 6.3, we can prove extreme inapproximability for either
maximizing the number of rows cleared or maximizing the number of pieces placed without a loss,
and a weaker inapproximability result for minimizing the maximum height of a filled gridsquare.

Theorem 6.4 Given a sequence of p pieces, approximating Tetris[max-placed-pieces] to within a
factor of p1−ε for any constant ε > 0 is NP-hard.

Proof. Our construction is as in Figure 9(b), but with a larger reservoir: choose r so that the
r-row reservoir’s unfilled area R is larger than (2A)1/ε, where A is the total area of the gameboard
excluding the reservoir rows. As before, we append to the original piece sequence one RG followed
by exactly enough Sq’s to completely fill the reservoir. As in Theorem 6.3, in the “yes” case of
3-Partition, we can place all of the pieces in the given sequence (which in total cover an area of
at least R), while in the “no” case we can place pieces covering at most 2A area before a loss must
occur. Thus it is NP-hard to distinguish the case in which we can survive all p pieces of the original
sequence from the case in which we can survive at most 2A/4 < (Rε)/4 < pε pieces. 2

Theorem 6.5 Given a sequence of p pieces, approximating Tetris[max-cleared-rows] to within a
factor of p1−ε for any constant ε > 0 is NP-hard.

Proof. Our construction is again as in Figure 9(b), with r > a2/ε rows in the reservoir, where there
are a total rows at or above the second lock. As above, in the “yes” case of 3-Partition, we can
completely fill and clear the gameboard, and in the “no” case we can clear at most a rows. Thus
it is NP-hard to distinguish the case in which at least r rows can be cleared from the case in which
at most a < rε/2 rows can be cleared.

Note that the number of columns c in our gameboard is fixed and independent of r, and that
the number of pieces in the sequence is constrained by r < p < (r + a)c. We also require that r be
large enough that p < (r + a)c < r2/(2−ε). (Note that r, and thus our game, is still polynomial in
the size of the 3-Partition instance.) Thus in the “yes” case we clear at least r > p1−ε/2 rows,
and in the “no” case we clear at most a < rε/2 < pε/2. Thus it is NP-hard to approximate the
number of cleared rows to within a factor of (p1−ε/2)/(pε/2) = p1−ε. 2

Theorem 6.6 Given a sequence of p pieces, approximating Tetris[min-height-filled] to within a
factor of 2 − ε for any constant ε > 0 is NP-hard.

Proof. Once again, our construction follows Figure 9(b). Let F = O(Ts) be the total number of
filled gridsquares at or above the rows of the lower lock, and let P = O(Ts) be the total number

21



of gridsquares in the piece sequence up to and including the second RG. Choose r = (F + P )/δ,
where δ = ε/(3 − ε).

As before, in the “yes” instance of 3-Partition, we can place the pieces of the given sequence
so that the highest filled gridsquare is in the (6T + 22)nd row of the original gameboard, which is
height 6T + 24 + r ≤ r + P + F ≤ r(1 + δ) in our gameboard.

In the “no” case, all of the Sq’s appended to the piece sequence will have to be placed at or above
the second lock, since we can never break into the reservoir. Note that, if rows are not cleared,
we can never pack the appended Sq’s into fewer than r rows. Thus the height of the highest filled
gridsquare is at least 2r−κ, where κ is the number of rows cleared during the sequence. As before,
we can only clear rows that have an odd number of filled gridsquares in them before the Sq’s in the
sequence. Since there are only F + P gridsquares in total in this part of the sequence, obviously
κ ≤ F + P = rδ. Thus there is a filled gridsquare at height at least r(2 − δ).

Therefore it is NP-hard to approximate the minimum height of the maximum filled gridsquare
to within a factor of r(2 − δ)/r(1 + δ) = (2 − δ)/(1 + δ) = 2 − ε. 2

7 Varying the Rules of Tetris

The completeness of our reduction does not depend on the full set of allowable moves in Tetris,
and the soundness does not depend on all of its limitations. Thus our results continue hold in some
modified settings.

7.1 Limitations on Player Agility

We have phrased the rules of Tetris so that the player can, in principle, make infinitely many
translations or rotations before moving the piece down to the next-highest row. When actually
playing Tetris, there is a fixed amount of time (varying with the difficulty level) in which to make
manipulations at height h; one cannot slide pieces arbitrarily far to the left or right before the piece
falls.

Our reduction requires only that the player be able to make two translations before the piece
falls by another row (or is fixed), to slide a LG into a notch. This is why we have chosen to have
3s + O(1) empty rows at the top of the game board—this gives us enough room to do any desired
translation and rotation before the piece reaches the top of a bucket while still only making two
moves at any given height. (In the “no” case for loss-avoidance, this may cause the game to end
more quickly, but the “yes” case remains feasible.)

Thus the problem remains NP-hard even when move sequences are restricted to at most two
moves between drops, for any of the objectives.

7.2 Piece Set

Our reduction uses only the pieces {LG,LS, I,Sq,RG}, so Tetris remains NP-complete when the
pieceset is thus restricted. By taking the mirror image of our reduction, the hardness also holds
for the pieceset {RG,RS, I,Sq,LG}. In fact, the use of the RG in the lock was not required; we
simply need some piece that does not appear elsewhere in the piece sequence. Thus Tetris remains
NP-hard for any piece set consisting of {LG,LS, I,Sq} or {RG,RS, I,Sq}, plus at least one other
piece. (The reduction works exactly as before if the key for the lock is T, pointing downward; for a
snake, the bottom three gridsquares of a vertically-oriented snake serves as the key, and we observe
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Figure 10: The Tetris model of rotation. The pictured k-by-k bounding box is in the same position
in each configuration; each piece can be rotated clockwise to yield the configuration on its right
(wrapping to the leftmost column) or counterclockwise to yield the configuration on its left.

that no other piece—except T, which is not in our sequence—can be placed without filling at least
two gridsquares above the (6T + 22)nd row.)

7.3 Losses

We defined a loss as the fixing of a piece so that it does not fit entirely within the gameboard; i.e.,
the piece fills some gridsquare in the would-be (m+1)st row of the m-row gameboard. Instead, we
might define losses as occurring only after rows have been cleared—that is, a piece can be fixed so
that it extends into the would-be (m + 1)st row, so long as this is not the case once all filled rows
are cleared. Since the completeness sequence (of Lemma 4.1) never fills gridsquares anywhere near
the top of the gameboard, our results hold for this definition as well.

In fact, for our original reduction, we do not depend on the definition of losses at all—the
completeness trajectory sequence does not near the top of the gameboard, and the soundness proof
does not rely on losses. Obviously the objective of Theorem 6.3 is nonsensical without a definition
of losses, but all other results still hold.

7.4 Rotation Rules

In Section 2, we specified concrete rules for the rotation of pieces around a particular fixed point
in each piece. In fact, our reduction applies for a wider variety of rotation models—any reasonable
rotation model, as defined in Section 5. In particular, there are two other reasonable rotation rules
of interest: the continuous model and the Tetris model that we have observed in practice.

In the continuous (or Euclidean) rotation model, the rotation of a piece is around its center,
as before, but we furthermore require that all gridsquares that the piece passes through must be
unoccupied.

Lemma 7.1 The continuous rotation model is reasonable. 2
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The Tetris rotation model, which we have observed to be the one used in a number of actual
Tetris implementations, is illustrated in Figure 10. Intuitively, this model works as follows: for
each piece type, choose the smallest k so that the piece fits within a k-by-k bounding box (k = 2
for Sq, k = 4 for I, and k = 3 otherwise). In a particular orientation, choose the smallest k1 and k2

so that the piece fits in k1-by-k2 bounding box. Place the piece so that the k1-by-k2 bounding box
is exactly centered in the k-by-k box. This does not in general yield a position aligned on the grid,
so shift the k1-by-k2 bounding box to the left and up, as necessary. (Incidentally, it took us some
time to realize that the “real” rotation in Tetris did not follow the instantaneous model, which is
intuitively the most natural one.)

Lemma 7.2 The Tetris rotation model is reasonable. 2

The proofs of Lemmas 7.1 and 7.2, found in Appendix A, are straightforward checks of the four
conditions of reasonable rotation models.

7.5 The Final Result

Theorem 7.3 It remains NP-hard to optimize (or approximate) the maximum height of a filled
gridsquare, the number of rows cleared, tetrises attained, or pieces placed without a loss when any
of the following hold:

1. the player is restricted to two rotation/translation moves before each piece drops in height.
2. pieces are restricted to {LG,LS, I,Sq} or {RG,RS, I,Sq} plus at least one other piece.
3. losses are not triggered until after filled rows are cleared.
4. rotations follow any reasonable rotation model.

When losses never occur, it remains hard to optimize (or approximate) the number of cleared rows,
number of tetrises, or maximum height of a filled gridsquare. 2

8 Conclusion and Future Work

An essential part of our reduction is a complicated initial gameboard from which the player must
start. A major open question is whether Tetris can be played efficiently with an empty initial
configuration:

• What is the complexity of Tetris when the initial gameboard is empty?

While our results hold under a variety of modifications to the rules of Tetris, some rule changes
break our reduction. In particular, our completeness result relies on the translation of pieces as
they fall. At more difficult levels of the game, it may be very hard to make two translations before
the piece drops another row in height.

• Is translation a crucial part of the complexity of Tetris? Suppose the model for moves (fol-
lowing Brzustowski [1]) is the following: the piece can be translated and rotated as many
times as the player pleases, and then falls into place. (That is, no translation or rotation is
allowed after the piece takes its first downward step.) Is the game still hard?

Another class of open questions considers versions of the Tetris game with gameboards and piecesets
of restricted size:
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• What is the complexity of Tetris for a gameboard with a constant number of rows? A constant
number of columns? Is Tetris fixed-parameter-tractable with respect to the number of rows
or number of columns? (We have polynomial-time algorithms for the special cases in which
the total number of gridsquares is logarithmic in the number of pieces in the sequence, or for
the case of a gameboard with two columns.)

• We have reduced the pieceset down to five of the seven pieces. For what piecesets is Tetris
polynomial-time solvable? (For example, with the pieceset {I} the problem seems polynomi-
ally solvable, though non-trivial because of the initial partially filled gameboard.)

Finally, in this paper we have concentrated our efforts on the offline, adversarial version of Tetris.
In a real Tetris game, the initial gameboard and piece sequence are generated probabilistically, and
the pieces are presented in an online fashion:

• What can we say about the difficulty of playing online Tetris if pieces are generated inde-
pendently at random according to the uniform distribution, and the initial gameboard is
randomly generated?

Acknowledgments. The first author thanks Amos Fiat and Ming-wei Wang for helpful initial
discussions. Thanks also to Josh Tauber for pointing out the puzzles in Games Magazine [7].
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A Rotation Models

Recall that a rotation model is reasonable if it satisfies the following four conditions:

1. A piece cannot “jump” from one bucket to another, or into a disconnected region.

2. An LG cannot enter a notch if the gridsquare in the second column of the notch row is filled.

3. For any balcony at height h with the ith column empty in the balcony, the only gridsquares
at height h′ ≤ h that can be filled by any piece other than an I are those in the ith column
in rows h and h − 1.

4. An I cannot enter a notch if the gridsquares in the second and third columns of the row
immediately beneath the notch row are filled.

As a preliminary step, we will give some sufficient conditions on rotation models for two of these
conditions.

Lemma A.1 Suppose, for every rotation of every piece, there is some gridsquare that is filled both
before and after the rotation. Then clause (1) of the definition of reasonable is satisfied.

Proof. Partition the unfilled gridsquares of the bucket into connected regions (where two gridsquares
are connected if and only if they share an edge), counting the four gridsquares containing the current
piece as unfilled. Since some gridsquare remains filled by the piece before and after a legal rotation,
the four gridsquares filled before and after the rotation must be in the same region. Furthermore,
neither a horizontal translation nor drop can shift the piece from one region to another.

By definition, a hole is a different region from that at the top of the bucket, where the piece
enters. A piece can never move from one region to another, so therefore it can never fill a hole.
Similarly, a piece can never jump from one bucket to another, since doing so would force it to pass
through the wall dividing the buckets. 2

Lemma A.2 Suppose, for every rotation of every piece except I, there is a row h that has at least
two gridsquares filled by the piece before the rotation, and, after the rotation, one of the following
holds:
(a) some row h′ ≥ h − 1 still has at least two gridsquares filled by the piece.
(b) row h − 2 has at least two gridsquares filled by the piece, and at least one gridsquare in row

h − 1 that was unfilled before the rotation is now filled.
Then clause (3) of the definition of reasonable is satisfied.

Proof. Suppose, as per clause (3), that there is a balcony at height b, with the ith column empty
in row b.

For every piece other than I, in any orientation, there is a row that has at least two gridsquares
filled by that piece. Call such a row heavy. In any configuration in which a heavy row is at height
b + 1 or above, it is easy to confirm that clause (3) is satisfied.

Suppose that there is a way to move the piece so that the following condition holds:

(∗) all of its heavy rows appear in row b − 1 or lower.
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Consider the first time that (∗) occurs, and consider the previous move σ, i.e., the one that made
(∗) true.

It is obvious that σ cannot be a horizontal translation or a fix, since these moves do not affect
the vertical placement of the heavy rows. Furthermore, the move σ cannot have been a drop, since
the filled gridsquares in the topmost heavy row would somehow have passed through the balcony.
Thus σ must have been a rotation.

If σ is a rotation satisfying condition (a), then there is a heavy row that cannot have passed
below the balcony—it is either still above the balcony, or at best is in the same row as the balcony,
implying that the rotation was not legal (since two of the three gridsquares in row b were already
occupied).

Otherwise, the rotation σ must satisfy the condition (b). The only way to have made (∗) true
would be for a heavy row to have been in row b + 1 before the rotation and b − 1 after. But, by
condition (b), to do this the piece must occupy two distinct gridsquares in row b: one before and
a different one after the rotation. Since row b is a balcony, and two of its three gridsquares are
already occupied, this is impossible.

Thus there is no such move σ, and clause (3) is satisfied. 2

A.1 Instantaneous Rotation

Lemma 5.10 The instantaneous rotation model is reasonable.

Proof. Recall that in the instantaneous rotation model, rotation occurs around the center of each
piece:

1. No piece can fill a hole. Immediate from Lemma A.1—by definition, the gridsquare
containing the center of the piece is filled before and after the rotation.

2. No LG can fully fill a spurned notch. Suppose that the LG managed to enter the notch,
and consider the first time that it did so. It is in the first of the following configurations when
this occurs.

In the move before its first entry into the notch, it must be in one of the remaining configu-
rations (respectively, arising from a clockwise rotation, counterclockwise rotation, left slide,
right slide, and drop). Note that it is impossible for the LG to have entered the notch via a
fix, which does not change the piece’s position or orientation.

In each of these configurations, the LG intersects a filled gridsquare—in the fourth, in the
second column of the notch row; for the others, one or more of the initially-filled gridsquares
in the notch columns of the bucket.

3. Only an I can fully pass a balcony. Immediate from Lemma A.2—one can easily verify
that, in fact, the first stated condition applies for each rotation.
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4. An I cannot enter a 011-floored notch or 111-floored notch. Suppose that the I

managed to enter the notch, and consider the first time that it did so. It is in the first
configuration of one of the following rows when this occurs. (Note that the rotation center
could be in either the second or third gridsquare of the I, reading from left to right.)

In the move before the I’s first entry into the notch, it must be in one of the remaining
configurations—respectively, arising from a clockwise rotation, counterclockwise rotation, left
slide, right slide, and drop. Note that it is impossible for the I to have entered the notch via
a fix, which does not change the piece’s position or orientation.

In each of these configurations but the third in each row, the previous position overlaps an
occupied gridsquare—one of the assumed gridsquares in the first two configurations of the
first row, and an initially-filled gridsquare in the notch columns in the remainder.

Thus the only way for the I to fully enter the notch is for it to have previously been partially
in the notch. Now we consider the previous position of the I before it was partially in the
notch. The following configurations are arranged analogously to the above.

But, in all but the fourth position of each row, the I overlaps a filled square, as before; in
the fourth, the previous position is fully in the notch. But, by our assumption that we are
considering the first entry into the notch, this cannot have been the previous configuration.

Therefore the I cannot fully enter the 011-floored notch or 111-floored notch.

Thus the instantaneous model is reasonable. 2

A.2 Continuous Rotation

Lemma 7.1 The continuous rotation model is reasonable.

Proof. Any move which is allowed in the continuous rotation model is also allowed in the instanteous
rotation model, so this follows immediately from Lemma 5.10. 2
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A.3 Tetris Rotations

Lemma 7.2 The Tetris rotation model is reasonable.

Proof. We show that the four requirements are met:

1. No piece can fill a hole. Immediate from Lemma A.1 and inspection of the rotations.

2. An LG cannot enter a spurned notch. Suppose that the LG somehow managed to enter
the notch. Then it must be in the first of the following configurations after it enters the
notch, and must have previously been in either the remaining configurations immediately
before (respectively, arising from a clockwise rotation, counterclockwise rotation, left slide,
right slide, and drop). Note that it is impossible for the LG to have entered the notch via a
fix, which does not change the piece’s position or orientation.

In each of these configurations, the LG intersects a filled gridsquare—in the fourth, in the
second column of the notch row; for the others, one or more of the initially-filled gridsquares
in the notch columns of the bucket.

3. Only an I can fully pass a balcony. Immediate from Lemma A.2 and inspection of the
rotation rules.

4. An I cannot enter a 011-floored notch or 111-floored notch. This is analagous to this
condition for instantaneous rotation, but simpler.

Suppose that the I managed to enter the notch, and consider the first time that it did so. It
is in the first configuration of the following when this occurs. In the move before the I’s first
entry into the notch, it must be in one of the remaining configurations—respectively, arising
from a rotation (clockwise and counterclockwise have the same result), right slide, left slide,
and drop. Note that it is impossible for the I to have entered the notch via a fix, which does
not change the piece’s position or orientation.

In each of these configurations but that arising from a right slide, the previous position
overlaps an occupied gridsquare.

Thus the only way for the I to fully enter the notch is for it to have previously been partially
in the notch. Now we consider the previous position of the I before it was partially in the
notch. The following configurations are arranged analogously to the above.
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In all but the position arising from the left slide, the I overlaps a filled square, as before. By
our assumption that we are considering the first entry into the notch, this cannot have been
the previous configuration.

Therefore the I cannot fully enter the 011-floored notch or 111-floored notch.

Thus the Tetris model is reasonable. 2
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B Deriving Unfillability from Reasonable Rotation Models

Recall that a bucket is unfillable if it cannot be filled completely using arbitrarily many pieces from
the set {LG,LS,Sq, I}. Note that, for the purposes of proving unfillability, we do not need to worry
about the piece RG.

In this appendix, we show that a variety of configurations are unfillable in any reasonable
rotation model. Note that by clause (1) of reasonable, we can limit our attention to a single bucket
when proving unfillability.

Lemma B.1 In any reasonable rotation model, a bucket with (a) a hole, (b) a spurned notch, (c)
a balconied 011-floored notch, or (d) a balconied 111-floored notch is unfillable.

Proof. Claim (a) is immediate from clause (1) of the definition. Since an I in the spurned notch
would have to occupy the (filled) gridsquare in the second column of that row, an LG is the only
piece that could fill the notch; thus claim (b) follows from clause (2) of the definition of reasonable.
For claims (c) and (d), the unfilled notch must be filled with an I by clause (3), and by clause (4)
no I can enter the notch. 2

Lemma B.2 In any reasonable rotation model, a bucket with a balconied 110-floored notch is
unfillable.

Proof. Say the balconied 110-floored notch is in row n. By clause (3), only an I can fill the notch
in row n. If the notch is filled by an I before the empty gridsquare in the third column of row n− 1
is filled, then the result is a hole. If the empty gridsquare in the third column of row n− 1 is filled
before the notch in row n is filled, then the result is a balconied 111-floored notch, or a hole if filling
the third gridsquare in row n − 1 simultaneously fills the third gridsquare of row n. Either way,
the result is unfillable. 2

Lemma B.3 Consider a bucket with a balcony in row h, and, somewhere below row h, an α-
veranda. In any reasonable rotation model, the bucket is unfillable if either

1. the α-veranda spans no notch rows, and α 6≡ 0 (mod 4), or
2. the α-veranda spans one notch row, and α 6∈ {0, 1} (mod 4).

Proof. By clause (3) of the definition of reasonable, the α-veranda can only be filled by I’s. (The
α-veranda cannot be located in the exception of clause (3)—in the ith column in the h and (h−1)st
rows, where the balcony leaves the ith column of row h open—because otherwise the α-veranda
would be above row h.)

1. An I cannot fit horizontally into any non-notch row, so the only way to fill the α-veranda is
with vertically placed I’s. But since α 6≡ 0 (mod 4), the α-veranda cannot be completely filled
by vertical I’s.

2. Just as in case (1), since α 6≡ 0 (mod 4) we cannot fill the α-veranda using vertical I’s
alone. The only other possibility is to place an I horizontally into the notch row, filling some
gridsquare in the middle of the α-veranda. This results in a β-veranda and γ-veranda, where
the notch was in the (β + 1)th-highest row of the α-veranda and β + 1 + γ = α.

By the assumption that α − 1 6≡ 0 (mod 4), we know that β + γ 6≡ 0 (mod 4), which implies
that at least one of β-veranda and γ-veranda falls into case (1).
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Thus such a bucket is unfillable. 2

Lemma B.4 In any reasonable rotation model, a bucket with a balconied (α 6≡4 0)-veranda in
non-notch rows or balconied 2-veranda is unfillable.

Proof. Immediate from Lemma B.3, since at most one of the rows spanned by a balconied 2-veranda
is a notch row. 2

Lemma B.5 In any reasonable rotation model, a bucket with a balconied unfilled sub-notch rect-
angle is unfillable.

Proof. Suppose the notch in row n has the rectangle beneath it unfilled. By clause (3) of the
definition of reasonable, only I’s can be used to fill the notch in row n and the unfilled gridsquares
in the rectangle below the notch.

Consider the unfilled gridsquare(s) in the ith column in rows n − 1, . . . , n − j, i ∈ {2, 3} and
j ∈ {1, 2, 3}, and the filled gridsquare in row n − j − 1. These unfilled gridsquares must be filled
by a vertically-placed I, since they are in non-notch rows.

If i = 3 and the gridsquare in column 3 and row n−1 is filled before the notch in row n is filled,
then the result is a hole: since j ≤ 3, the vertical I extends into row n. If i = 2 and the gridsquare
in column 2 and row n − 1 is filled before the notch in row n is filled, then the result is a spurned
notch: again, the vertical I extends into row n.

If, on the other hand, the notch is filled before the unfilled gridsquare in row n − 1, then the
result is a j-veranda: in column i, rows n and n − j − 1 are filled and rows n − 1, . . . , n − j are
unfilled. Furthermore, for j ≤ 3, none of the unfilled rows are notch rows (since n is a notch row).
This is unfillable by Lemma B.3.

Regardless of which we try to fill first, the resulting configuration is unfillable. 2

Lemma B.6 In any reasonable rotation model, a bucket with a balconied flat-bottomed 2/3-ceiling
discrepancy is unfillable.

Proof. Suppose that in row f the gridsquares in both the second and third columns are filled,
and in rows f + 1, . . . , f + α both are empty, and that the second gridsquare in row f + α + 1
is filled. Further suppose that the second column is full and the third column empty in rows
f + α + 1, . . . , f + α + β, and is filled in row f + α + β + 1, where β 6≡ 0 (mod 4). (The case when
columns two and three are swapped is analogous.) By clause (3) of the definition of reasonable,
only I’s can be used to fill the unfilled gridsquares beneath row f + α + β + 1.

If f + α + 1 is a notch row, then it is a spurned notch—or a hole for the case in which the
unfilled segment of column three is the shorter one—which is unfillable by Lemma B.1. If all of
f + 1, . . . , f + α are non-notch rows, then we have an α-veranda and an (α + 1)-veranda spanning
no notch rows. By Lemma B.3, this is unfillable. Otherwise, there is at least one unfilled notch
row in rows f + 1, . . . , f + α; consider the highest such notch row r.

If an I is placed horizontally to fill the notch in row r before any gridsquares in the second
or third columns at or above row r are filled, then the resulting configuration has a balconied
flat-bottomed 2/3-ceiling discrepancy spanning only non-notch rows. By the previous case, this is
unfillable.

Thus some I must be placed vertically to fill gridsquares in the second or third columns at or
above row r before the notch is filled. Such a placement of an I must fill either the second or third
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gridsquare of row r as well (a vertical I fills four unfilled gridsquares above a filled gridsquare in
the same column). This creates a spurned notch or a hole, respectively.

In any case, then, the configuration is unfillable. 2

Lemma B.7 In any reasonable rotation model, a bucket with a balconied notch-spanning 2/3-
ceiling discrepancy is unfillable.

Proof. By clause (3) of the definition of reasonable, only I’s can be used to fill the spanned notch.
Once this notch is filled, the result is a balconied flat-bottomed 2/3-ceiling discrepancy. 2

Lemma 5.9 In any reasonable rotation model, any bucket containing any of the following is
unfillable:

1. a hole.
2. a spurned notch.
3. a balconied 110-floored notch, 011-floored notch, or 111-floored notch.
4. a balconied unfilled sub-notch rectangle.
5. a balconied (α 6≡4 0)-veranda in non-notch rows.
6. a balconied 2-veranda.
7. a balconied flat-bottomed 2/3-ceiling discrepancy.
8. a balconied notch-spanning 2/3-ceiling discrepancy.

Proof. Immediate from Lemmas B.1, B.2, B.4, B.5, B.6, and B.7. 2
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Figure 11: Configurations that can arise during play: (a,b) unprepped, (c) overflat, (d) trigger-
happy (e) tall-plateau, (f) underflat, (g) (I-UP), (h,i) (LG-UP-i), (j) (I-UP-LG-i), (k,l) (LG-UP-
{i, j}), (m) short-plateau, (n) (LG-TP-i), (o) (LG-UF-i), (p) (LG-UA-i), (q) (LG-UA-{i, j}), (r)
(LG-OF-1), (s) (LG-OF-2), (t) (LG-OF-3), (u) (LG-OF-4-i), (v) (LG-TH-i), (w) (LG-TH-{i, j}). In
each annotated configuration, the ith-highest (and jth-highest) notches have LGs filling them.

C Proof of Soundness Propositions

In this section, we show that, under any reasonable rotation model, there is no possible way to
win the game G(P) without playing “right.” In Figure 11, we show the configurations that will be
relevant in our proofs.

C.1 Pieces and Configurations

C.1.1 Unprepped Buckets

Proposition C.1 If I is dropped validly into an unprepped bucket, then it produces either an un-
derflat bucket or an (I-UP) bucket.
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Proof. For an unprepped bucket in which the first column is the unfilled one, the possible placements
of the I are as follows:

(The first and second configurations have the I horizontally in the ith-highest notch. Both of these
configurations are blocked for i = 1, since this configuration has a 011-floored notch and thus no I

can enter the bottom notch.)
The first has a hole for any i. In the second, for any i6 = 1, the lowest notch is a balconied

011-floored notch; for i = 1, this is blocked. The third configuration is underflat, the fourth
configuration has a spurned notch, and the last has a hole.

For the other kind of unprepped bucket, with the third column unfilled, the possible placements
of the I are as follows:

(The first and second configurations have the I horizontally in the ith-highest notch.)
The first has a hole in the notch for any i. The second configuration has a hole for i = 1 and is

a balconied 110-floored notch for i > 1. The third is underflat, and the fourth has a spurned notch.
The fifth is (I-UP). 2

Proposition C.2 If LG is dropped validly into an unprepped bucket, it produces (LG-UP-i) for
some i.

Proof. If the unprepped bucket has the first column empty and the bottom four rows of the second
and third columns full, then the possible configurations are the following:
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(In the fifth configuration, the ith-highest notch is partially filled, for any i > 1; the eighth and
ninth apply for any i ≥ 1.)

Each but the last of these configurations creates a hole (the fifth for any i > 1 and the eighth
for any i ≥ 1); the last is (LG-UP-i).

For the other kind of unprepped bucket, with an empty third column, the possible configurations
are the following:

(The fifth, eighth, and ninth have the LG in the ith-highest notch; these apply for any i.)
The first configuration has a spurned notch, the third has a balconied 110-floored notch, and

the last is (LG-UP-i). The remainder of these configurations all have holes (the fifth and eighth for
all i ≥ 1). 2

Proposition C.3 There is no valid move for Sq in an unprepped bucket.

Proof. The possible placements for a Sq are as follows:

The first, second, and fourth of these create holes; the third has a spurned notch. 2

Proposition C.4 There is no valid move for LS in an unprepped bucket.

Proof. The possible configurations are the following:

(In the fourth and eighth of these configuration, the LS is in the ith-highest notch, for any i ≥ 1.)
All of these configurations except the fifth have holes; the fifth has a balconied 110-floored

notch. 2
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C.1.2 (I-UP) Buckets

Proposition C.5 If LG is dropped validly into an (I-UP) bucket, it produces (I-UP-LG-i) for some
i ≥ 2.

Proof. The possible configurations are the following:

(In the fifth, eighth, and ninth configurations, the ith-highest notch is (partially) filled, for any
i ≥ 1.)

The first has a balconied 110-floored notch, as does the third. All other configurations except
the last have holes (including the fifth and eighth for any i). The last is (I-UP-LG-i), though there
is a hole if i = 1. 2

Proposition C.6 There is no valid placement of Sq in an (I-UP) bucket.

Proof. The possible configurations are the following:

The first has a balconied 110-floored notch, and the second has a hole. 2

Proposition C.7 There is no valid placement of Sq in an (I-UP-LG-i) bucket.

Proof. The possible configurations are the following:
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(In each configuration, the LG is initially in the ith-highest notch for any i > 1; if i = 1, the
configuration already has a hole.)

The first and third configurations have a balconied 110-floored notch; the second has a hole. 2

C.1.3 LG-prepped Buckets

Proposition C.8 There is no valid move for Sq in (LG-UP-i).

Proof. The possible configurations are as follows:

(In each configuration, the LG is initially in the ith-highest notch for any i ≥ 1. The second and
fifth configurations are blocked if i = 1.)

The first, second (for i > 1), and fifth (for i > 1) configurations have holes. The third has a
balconied 011-floored notch if i > 1, or a balconied 2-veranda if i = 1. The fourth has a spurned
notch if i > 1, and a hole if i = 1. The sixth has a balconied 110-floored notch if i > 1, or a hole if
i = 1. 2

Proposition C.9 There is no valid move for LS in (LG-UP-i).

Proof. With (LG-UP-i) so that the first column is unfilled in the bottom four rows, the possible
configurations are the following:

(The LG is in the ith-highest column initially. In the last of these configurations, the LS is in the
jth-highest notch, for any j ≥ 1 and j6 = i. The second and fourth configurations are possible only
if i6 = 1.)

Of these, all configurations but the third create holes (the last for any j), and the third has a
balconied 011-floored notch, or a balconied 1-veranda in non-notch rows for i = 1.

With (LG-UP-i) so that the first four rows of the third column are unfilled, the possible config-
urations are the following:
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(Again, the LG is in the ith-highest notch initially and the LS in the last configuration is in the
jth-highest notch, for any j ≥ 1 and j6 = i. The second and fourth configurations are possible only
if i6 = 1.)

The first and third both have a balconied 110-floored notch, or a hole if i = 1. The second (for
i > 1), fourth, fifth, and sixth (for any j) have a hole. 2

Proposition C.10 If LG is validly placed in (LG-UP-i), then the result is a short-plateau or a
(LG-UP-{i, j}) for some j.

Proof. When the given (LG-UP-i) bucket has the empty rows in the first column, the possible
configurations are as follows. First, the configurations in which the LG is placed vertically:

(The notch initially filled with the LG is the ith-highest; in the last configuration, the jth-highest
notch is also filled for any j6 = i and j ≥ 1. If i = 1, the second configuration is impossible, and the
fifth and sixth configurations are identical.)

The first, second, fourth, fifth (for i > 1), and seventh (for any j6 = i) configurations have holes.
The third has a balconied 2-veranda for i = 1 and a balconied 011-floored notch for i > 1. The
sixth also has a balconied 011-floored notch for i > 1. For i = 1, the fifth and sixth configurations
are identical, and form a short-plateau.

And, now, those in which the LG is placed horizontally:

39



(The LG is initially in the ith-highest notch; in the last two configurations, the jth-highest notch is
also (partially) filled by a new LG, for any j6 = i and j ≥ 1. If i = 1, the first and third configurations
are impossible.)

All but the last of these has a hole (and the fifth has a hole regardless of the value of j). The
last configuration is (LG-UP-{i, j}).

When the given (LG-UP-i) bucket has the empty rows in the third column, the possible config-
urations are as follows. When the LG is placed vertically:

(The notch initially filled with the LG is the ith-highest for any i ≥ 1; in the last configuration, the
jth-highest notch is also filled for any j6 = i and j ≥ 1. If i = 1, then there is a hole initially, and
all configurations are invalid.)

The first has a spurned notch. The second, fifth, and seventh (for any j) have holes. The third,
fourth, and sixth all have a balconied 110-floored notch.

And, now, those in which the LG is placed horizontally:
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(The LG is initially in the ith-highest notch for any i ≥ 1; in the last two configurations, the jth-
highest notch is (partially) filled by a new LG, for any j6 = i. If i = 1, there is a hole initially, and
all configurations are invalid.)

All but the last of these has a hole (and the next-to-last has a hole regardless of the value of
j). The last configuration is (LG-UP-{i, j}). 2

Proposition C.11 There is no valid move for Sq in (LG-UP-{i, j}).

Proof. The possible configurations are:

(The initially filled notches are the ith- and jth-highest, for i, j ≥ 1 and i6 = j. The second
configuration is blocked for min(i, j) = 1. The fifth, sixth, seventh, and eighth configurations have
holes and are thus invalid if min(i, j) = 1.)

In the first, second, and sixth configurations, there are holes. The third has a balconied 2-
veranda for min(i, j) = 1 and a balconied 011-floored notch for min(i, j) > 1. The fourth has a
balconied 5-veranda in non-notch rows for max(i, j) = 2, a balconied notch-spanning 2/3-ceiling
discrepancy for min(i, j) = 1 and max(i, j) > 2, and a balconied 011-floored notch for min(i, j) > 1.
In the fifth configuration, there is a spurned notch. The seventh and eighth each have a balconied
110-floored notch for min(i, j) > 1. 2
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C.1.4 Short-Plateau Buckets

Proposition C.12 If Sq is validly placed in a short-plateau bucket, then the result is a tall-plateau.

Proof. The only possible configurations are

The first has a hole; the second is a tall-plateau, as desired. 2

C.1.5 Tall-Plateau Buckets

Proposition C.13 There is no valid move for LS in a tall-plateau bucket.

Proof. The possible configurations are the following:

(The second configuration has the LS in the ith-highest notch, for any i ≥ 1.)
All four have holes. 2

Proposition C.14 There is no valid move for Sq in a tall-plateau bucket.

Proof. The possible configurations are the following:

Both have holes. 2
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Proposition C.15 If LG is placed validly in a tall-plateau bucket, the result is a (LG-TP-i) for
some i.

Proof. The following configurations are possible:

(In the third configuration, the LG is placed in the ith-highest bucket, for i > 1, and in the eighth
and ninth, for i ≥ 1.)

Of these, there is a hole in all but the last. The last is a (LG-TP-i). 2

Proposition C.16 There is no valid placement of LS in (LG-TP-i) for any i.

Proof. The following configurations are possible:

(Initially the ith-highest notch is filled by the LG. The second configuration denotes the LS in the
jth-highest notch, for any j6 = i. The fifth configuration is blocked for i = 1.)

Of these, there is a hole in all but the last, which has a balconied flat-bottomed 2/3-ceiling
discrepancy (or a balconied 2-veranda if i = 1). 2

C.1.6 Underflat Buckets

Proposition C.17 If LG is dropped into an underflat bucket, it produces (LG-UF-i) for some i.

Proof. The possible configurations are the following:
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(The fifth of these applies to the ith-highest notch for any i > 1, the eighth and ninth for any
i ≥ 1.)

The first configuration creates a spurned notch, and the third has a balconied 111-floored notch.
Of the others, all but the last—(LG-UF-i)—create holes. 2

Proposition C.18 There is no valid move for Sq in an underflat bucket.

Proof. The possible configurations are the following:

The first of these configurations has a spurned notch, and the second has a hole. 2

Proposition C.19 There is no valid move for LS in an underflat bucket.

Proof. The possible configurations are the following:

(The second has the LS in the ith-highest notch, for any i ≥ 1.)
The first, second, and fourth of these configurations have holes; the second has a balconied

111-floored notch. 2

Proposition C.20 If Sq is dropped validly into (LG-UF-i), then (1) i = 1, and (2) the result is
an overflat bucket.

Proof. The possible configurations are as follows:
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(In each of these configurations, the ith-highest notch is initially filled with the LG, for any i ≥ 1.
The third configuration is impossible if i = 1.)

The first of these is a balconied 111-floored notch for i > 1 and a balconied 2-veranda for i = 1.
The second is a spurned notch unless the lowest notch is filled, i.e., unless i = 1; in this case, the
reuslt is overflat. The third configuration has a hole. 2

C.1.7 Overflat Buckets

Proposition C.21 If LG is validly placed in an overflat bucket, the result is (LG-OF-1), (LG-OF-
2), (LG-OF-3), or (LG-OF-4-i) for some i.

Proof. The possible configurations for placement of the LG are as follows:

(The fifth, eight, and ninth denote the placement of the LG in the ith-highest notch, for any i ≥ 1.)
The first two configurations are (LG-OF-1) and (LG-OF-2). The third has a balconied 2-veranda

in the second column; the fourth, fifth (for any i), sixth and eighth (for any i) have holes. The
seventh is (LG-OF-3), and the last is (LG-OF-4-i). 2

Proposition C.22 There is no valid move for LS in an overflat bucket.

Proof. The possible configurations are:
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(The fourth represents the placement of the LS into the ith notch for any i ≥ 1.)
The first of these configurations has a balconied 1-veranda in non-notch rows; the remaining

three have holes. 2

Proposition C.23 If 〈Sq,Sq〉 is validly placed in an overflat bucket, then the result is an unprepped
bucket.

Proof. The possible configurations after the placement of the first Sq are as follows:

Both of these configurations are valid. Now, when we place the second Sq, the possible results are
the following:

The second and fourth configurations have holes; the first and third are both unprepped. 2

Proposition C.24 There is no valid move for LS in (LG-OF-1).

Proof. The only possible configurations are as follows:

(The fourth denotes the placement of the LS into the ith-highest notch, for any i ≥ 1.)
All of these configurations have holes. 2

Proposition C.25 There is no valid placement of LS into (LG-OF-2).

Proof. Then the possible configurations are the following:
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(The fourth denotes the placement of the LS into the ith-highest notch, for any i ≥ 1.)
The first configuration is unapproachable, and the other three have holes. 2

Proposition C.26 If LS is placed validly in (LG-OF-3), the result is a trigger-happy bucket.

Proof. The only possible configurations are the following:

(The fourth denotes the placement of the LS into the ith-highest notch, for any i ≥ 1.)
The first has a spurned notch, and the second and fourth have holes. The third is trigger-happy,

as desired. 2

Proposition C.27 There is no valid move for LS in (LG-OF-4-i) for any i.

Proof. Then the possible configurations are the following:

(Initially, in each configuration, there is an LG in the ith-highest notch, for some i ≥ 1. The sixth
configuration denotes the placement of the LS into the jth-highest notch, for any j6 = i and j ≥ 1.)

The first has a balconied 1-veranda in non-notch rows. The second, fourth, fifth, and sixth (for
any j) have holes, and the third has a balconied flat-bottomed 2/3-ceiling discrepancy. 2
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C.1.8 Trigger-Happy Buckets

Proposition C.28 There is no valid move for Sq in a trigger-happy bucket.

Proof. The possible placements for a Sq in a trigger-happy bucket are as follows:

The first has a spurned notch; the second has a hole. 2

Proposition C.29 If LG is placed validly into a trigger-happy bucket, the resulting configuration
is either (LG-TH-i) or underflat.

Proof. The possible configurations for the LG in the trigger-happy bucket are as follows:

(In the fifth, seventh, and eighth configurations, the LG is in the ith-highest notch for any i ≥ 1.)
The first has a spurned notch, and the third has a balconied 2-veranda. The eighth is (LG-TH-i),

and the ninth is underflat. The remainder have holes. 2

Proposition C.30 There is no valid move for LS in a trigger-happy bucket.

Proof. The possible configurations are as follows:
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(The second configuration represents the placement of the LS into the ith-highest notch for any
i ≥ 1.)

The first, second (for any i), and fourth configurations have holes; the third has a spurned
notch. 2

Proposition C.31 There is no valid placement of Sq in (LG-TH-i).

Proof. The possible configurations are the following:

(The LG is initially in the ith-highest notch for i ≥ 1; the second configuration is blocked for i = 1.)
The first has a spurned notch for i > 1 and a hole for i = 1. The second has a hole. The third

has a balconied unfilled sub-notch rectangle if i > 1 and a balconied 2-veranda if i = 1. 2

Proposition C.32 There is no valid placement of LS in (LG-TH-i).

Proof. The possible configurations are the following:

(The LG is initially in the ith-highest notch for i ≥ 1; the fifth configuration is blocked for i = 1.
In the second configuration, the LS is in the jth-highest notch for any j6 = i and j ≥ 1.)

The fourth configuration has a spurned notch for i > 1, and a hole for i = 1. The sixth has
a balconied unfilled sub-notch rectangle for i > 1 and a balconied 2-veranda for i = 1. All other
configurations have holes. 2

Proposition C.33 If LG is placed validly into (LG-TH-i) then the result is either (LG-UF-i) or
(LG-TH-{i, j}).
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Proof. The possible configurations are as follows when the LG is placed vertically:

(The initially-placed LG is in the ith-highest notch, for some i ≥ 1. The second and fifth configu-
rations are blocked for i = 1. In the last configuration, the LG is in the jth-highest notch, for any
j6 = i and j ≥ 1.)

The first configuration has a spurned notch for i > 1 and a hole for i = 1. The second and fifth
have a hole. The third and sixth each have a balconied unfilled sub-notch rectangle for i > 1 and a
balconied 2-veranda for i = 1. The fourth has a balconied 2-veranda for i > 1 and a hole for i = 1.
The last has a hole for any j.

The possible configurations are as follows when the LG is placed horizontally:

(The initially-placed LG is in the ith-highest notch for some i ≥ 1; in the second and third config-
urations, the LG is placed into the jth-highest notch, for j6 = i and j ≥ 1.)

The third configuration is (LG-TH-{i, j}); the fifth is (LG-UF-i). The remainder all have holes.
2

Proposition C.34 There is no valid move for Sq in (LG-TH-{i, j}).

Proof. The possible configurations are the following:
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(The initial LG’s are in the ith- and jth-highest notches, for some i, j ≥ 1. The second configuration
is blocked if min(i, j) = 1.)

The first has a spurned notch (or a hole if min(i, j) = 1), the second has a hole, and the
third and fourth both have a balconied unfilled sub-notch rectangle (or a balconied 2-veranda if
min(i, j) = 1). 2
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C.2 Soundness Theorems

Lemma 5.11 In an unprepped configuration, the only possibly valid strategy for 〈I,LG,Sq〉 is to
place all three pieces in some bucket to produce an overflat bucket, yielding a one-overflat configu-
ration.

Proof. Initially, all buckets are unprepped. By Proposition C.1, the result of placing the I in an
unprepped bucket is either underflat or (I-UP).

• I produces an underflat bucket. Then the configuration is one-underflat, and consists of
unprepped buckets and an underflat bucket.

– The LG goes into the underflat bucket. By Proposition C.17, the result is (LG-UF-i)
for some i.

Then the current configuration consists of unprepped buckets and (LG-UF-i). Now we
consider where we can place the Sq:

∗ The Sq goes into the (LG-UF-i) bucket. By Proposition C.20, this is valid iff
i = 1 and the result is overflat.

∗ The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

– The LG goes into an unprepped bucket. By Proposition C.2 the result is (LG-UP-i)
for some i. Then the current configuration consists of unprepped buckets, an underflat
bucket, and (LG-UP-i). But now we must place the Sq:

∗ The Sq goes into the (LG-UP-i) bucket. Invalid by Proposition C.8.

∗ The Sq goes into the underflat bucket. Invalid by Proposition C.18.

∗ The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

Thus the only valid move sequence is to place the LG in the same bucket to yield a (LG-UP-1),
and then the Sq in the same bucket to yield an overflat bucket.

• I produces an (I-UP) bucket. Then the current configuration consists of unprepped buckets
and an (I-UP) bucket.

– The LG goes into the (I-UP) bucket. By Proposition C.5, the result is (I-UP-LG-i)
for some i.

Then the current configuration consists of unprepped buckets and (I-UP-LG-i).

∗ The Sq goes into the (I-UP-LG-i) bucket. Invalid by Proposition C.7.

∗ The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

– The LG goes into an unprepped bucket. By Proposition C.2 the result is (LG-UP-i)
for some i. Then the current configuration consists of unprepped buckets, (LG-UP-i),
and (I-UP). But now we must place the Sq:

∗ The Sq goes into the (LG-UP-i) bucket. Invalid by Proposition C.8.

∗ The Sq goes into the (I-UP) bucket. Invalid by Proposition C.6.

∗ The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

Thus the only valid move sequence is to place the I into a bucket to yield an underflat configuration,
then place the LG in the same bucket to yield a (LG-UP-1), and finally the Sq in the same bucket
to yield an overflat. 2
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Lemma C.35 In a one-overflat configuration, the only possibly valid strategy for the sequence
〈LG,LS〉 is to place both pieces into the overflat bucket, producing a trigger-happy bucket, yielding
a one-trigger-happy configuration.

Proof. The initial configuration consists of unprepped buckets and one overflat bucket.

• The LG goes into an unprepped bucket. By Proposition C.2, the result is (LG-UP-i) for
some i. Then the configuration now consists of unprepped buckets, one overflat bucket, and
one (LG-UP-i) bucket.

– The LS goes into the overflat bucket. Invalid by Proposition C.22.

– The LS goes into the (LG-UP-i) bucket. Invalid by Proposition C.9.

– The LS goes into an unprepped bucket. Invalid by Proposition C.4.

• The LG goes into the overflat bucket. By Proposition C.21, the result is (LG-OF-1),
(LG-OF-2), (LG-OF-3), or (LG-OF-4-i) for some i. Then the current configuration consists of
unprepped buckets and one (LG-OF-1), (LG-OF-2), (LG-OF-3), or (LG-OF-4-i).

– The LS goes into an unprepped bucket. Invalid by Proposition C.4.

– The LS goes into the (LG-OF-1) bucket. Invalid by Proposition C.24.

– The LS goes into the (LG-OF-2) bucket. By Invalid by Proposition C.25.

– The LS goes into the (LG-OF-3) bucket. By Proposition C.26, the result is trigger-
happy.

– The LS goes into the (LG-OF-4-i) bucket. Invalid by Proposition C.27.

Thus the only possibly valid move is the placement of the LG into the overflat bucket to yield
either a (LG-OF-2) or a (LG-OF-3), and the placement of the LS into the same bucket to make it
trigger-happy. This results in a one-trigger-happy configuration. 2

Lemma C.36 In a one-trigger-happy configuration, the only possibly valid strategy for the se-
quence 〈LG,LG,Sq〉 is (1) to place all three pieces in the trigger-happy bucket to yield a one-overflat
configuration, or (2) to place all three pieces in an unprepped bucket to yield a one-tall-plateau-one-
trigger-happy configuration.

Proof. Our initial configuration consists of unprepped buckets and one trigger-happy bucket. First,
we consider whether zero, one, or two of the LG’s go into the trigger-happy bucket:

• Neither LG goes into the trigger-happy bucket. Then the two LG’s go into unprepped
buckets.

– The two LG’s go into different unprepped buckets. Then by Proposition C.2, the
result of dropping each LG is (LG-UP-i) and (LG-UP-i′), for some i and i′.

Thus our configuration consists of unprepped buckets, (LG-UP-i), (LG-UP-i′), and a
trigger-happy bucket.

∗ The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

∗ The Sq goes into (LG-UP-i) or (LG-UP-i′). Invalid by Proposition C.8.

∗ The Sq goes into the trigger-happy bucket. Invalid by Proposition C.28.
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– The two LG’s go into the same unprepped bucket. Then by Proposition C.2, the
result of dropping the first LG into an unprepped bucket is (LG-UP-i) for some i. By
Proposition C.10, the result of the second is a short-plateau or (LG-UP-{i, j}), for some
j.

Now our configuration consists of unprepped buckets, a trigger-happy bucket, and one
(LG-UP-{i, j}) or short-plateau.

∗ The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

∗ The Sq goes into the trigger-happy bucket. Invalid by Proposition C.28.

∗ The Sq goes into (LG-UP-{i, j}). Invalid by Proposition C.11.

∗ The Sq goes into the short-plateau bucket. By Proposition C.12, the result is
a tall-plateau.

• Exactly one of the LG’s goes into the trigger-happy bucket. By Proposition C.29,
the result of placing the LG into the trigger-happy bucket is either (LG-TH-i) or underflat,
and by Proposition C.2, the result of dropping the other LG into an unprepped column is
(LG-UP-i′), for some i and i′.

The resulting configuration then consists of unprepped buckets, (LG-UP-i′) and either (LG-
TH-i) or underflat.

– The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

– The Sq goes into (LG-UP-i′). Invalid by Proposition C.8.

– The Sq goes into (LG-TH-i). Invalid by Proposition C.31.

– The Sq goes into underflat. Invalid by Proposition C.18.

• Both of the LG’s go into the trigger-happy bucket. By Proposition C.29, the result of
placing the LG into the trigger-happy bucket is either underflat or (LG-TH-i) for some i.

By Proposition C.33, the result of placing the second LG in (LG-TH-i) is either (LG-UF-i) or
(LG-TH-{i, j}) for some j. By Proposition C.17, the result of placing the LG in the underflat
bucket is also (LG-UF-i).

Then, regardless of whether the first LG produced (LG-TH-i) or underflat, the current con-
figuration consists of unprepped buckets and either (LG-UF-i) or (LG-TH-{i, j}).

– The Sq goes into an unprepped bucket. Invalid by Proposition C.3.

– The Sq goes into (LG-UF-i). By Proposition C.20, this is valid iff i = 1 and the result
is overflat.

– The Sq goes into (LG-TH-{i, j}). Invalid by Proposition C.34.

Thus the only possibly-valid moves are to place all three pieces into (1) the trigger-happy bucket
to produce an overflat bucket, yielding a one-overflat configuration, or (2) an unprepped bucket to
produce a tall-plateau bucket, yielding a one-tall-plateau-one-trigger-happy configuration. 2

Lemma C.37 There is no valid move for the sequence 〈LG,LS〉 in a one-tall-plateau-one-trigger-
happy configuration.

Proof. Our initial configuration consists of unprepped buckets, one tall-plateau bucket, and one
trigger-happy bucket.
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• The LG goes into an unprepped bucket. Then by Proposition C.2, the result is (LG-UP-i)
for some i.

– The LS goes into an unprepped bucket. Invalid by Proposition C.4.

– The LS goes into (LG-UP-i). Invalid by Proposition C.9.

– The LS goes into the tall-plateau bucket. Invalid by Proposition C.13.

– The LS goes into the trigger-happy bucket. Invalid by Proposition C.30.

• The LG goes into the tall-plateau bucket. Then by Proposition C.15, the result is
(LG-TP-i) for some i.

– The LS goes into an unprepped bucket. Invalid by Proposition C.4.

– The LS goes into (LG-TP-i). Invalid by Proposition C.16.

– The LS goes into the trigger-happy bucket. Invalid by Proposition C.30.

• The LG goes into the trigger-happy bucket. Then by Proposition C.29, the result is
either underflat or (LG-TH-i) for some i.

– The LS goes into an unprepped bucket. Invalid by Proposition C.4.

– The LS goes into (LG-TH-i). Invalid by Proposition C.32.

– The LS goes into the underflat bucket. Invalid by Proposition C.19.

– The LS goes into the tall-plateau bucket. Invalid by Proposition C.13.

Thus there is no valid strategy for 〈LG,LS〉 in a one-tall-plateau-one-trigger-happy configuration.
2

Lemma 5.12 For the sequence 〈LG,LS,LG,LG,Sq〉:

1. In a one-overflat configuration, the only possibly valid strategy is either (1) to place all pieces
in the overflat bucket to produce an overflat bucket, yielding a one-overflat configuration, or
(2) to place 〈LG,LS〉 into the overflat bucket and 〈LG,LG,Sq〉 in an unprepped bucket, yielding
a one-tall-plateau-one-trigger-happy configuration.

2. In a one-tall-plateau-one-trigger-happy configuration, there is no valid strategy.

Proof. For the one-overflat configuration, by Lemma C.35, if the sequence 〈LG,LS〉 is placed validly,
both pieces are dropped into the overflat bucket, and the result is a one-trigger-happy configuration.
By Lemma C.36, the only valid placement for the sequence 〈LG,LG,Sq〉 in a one-trigger-happy
configuration yields a one-overflat (placing all three pieces into the trigger-happy bucket) or one-
tall-plateau-one-trigger-happy configuration (placing them into an unprepped bucket).

In the one-tall-plateau-one-trigger-happy configuration, by Lemma C.37, there is no valid tra-
jectory sequence. 2

Lemma 5.13 For the sequence 〈Sq,Sq〉,

1. In a one-overflat configuration, the only possibly valid strategy is to place both pieces in the
overflat bucket to produce an unprepped bucket, yielding an unprepped configuration.
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2. In a one-tall-plateau-one-trigger-happy configuration, there is no valid strategy.

Proof. By Propositions C.3, C.28, and C.14, no Sq can validly go into any unprepped, trigger-happy,
or tall-plateau bucket.

For a one-overflat configuration, then, both Sq’s must go into the overflat bucket. By Proposition
C.23, the result is an unprepped bucket.

For a one-tall-plateau-one-trigger-happy configuration, there is no bucket into which the first
Sq can be validly placed. 2
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